Forgot password
 Register account
View 1881|Reply 4

[几何] 2017永康模拟(立体几何))

[Copy link]

205

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2017-5-30 21:35 |Read mode
Y{`BNN`{(N$K6${1(1W_RTD.GIF

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-5-30 22:30
图里有两个F是怎么回事啊,而且不但图,连题目也是,后面估计是 $\triangle CGH$ 沿 GH 折

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2017-5-30 22:54
$CN^2=MN^2+AM^2$处,应该还有最小值
211.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2017-5-30 23:25
回复 3# 乌贼
本想算一算,出现4次方,放弃……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-5-31 03:21
把取值范围也算出来了。

QQ截图20170531032210.png

作 $AP\perp EF$ 于 $P$,连结 $PC$,则翻折后能让 $A$, $C$ 重合当且仅当 $GH\perp PC$ 并且它们的交点 $Q$ 满足 $AP^2+PQ^2=QC^2$。

依照这些设定,经过一系列的计算(过程懒得写出,反正也不好看,我是建系硬解的),最终可得
\[\led
CG&=\frac{x^4+2x^2+16}{2x^3+4x},\\
CH&=\frac{x^4+2x^2+16}{2x^2+16},
\endled\]
于是,要满足题意,当且仅当 $x$ 满足如下不等式组
\[\led
x&\geqslant \frac{x^4+2x^2+16}{2x^3+4x},\\
2&\geqslant \frac{x^4+2x^2+16}{2x^2+16},
\endled\]
解得
\[\sqrt{\sqrt{17}-1}\leqslant x\leqslant \sqrt{1+\sqrt{17}}.\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:23 GMT+8

Powered by Discuz!

Processed in 0.014673 seconds, 25 queries