Forgot password?
 Register account
View 1551|Reply 6

[数列] 数列不等式2,请教(外一,可能再外一)

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-6-1 21:45 |Read mode
Last edited by 力工 2017-6-2 21:16已知$\{a_n\}$的通项为$a_n=\dfrac{4n^n}{(n+2)^{n+2}}$,且前n项和为$S$,试证明:(1)$a_n\leqslant \dfrac{1}{(n+2)^2}$;(2)$S<\dfrac{13}{27}$.
外一:
已知$\{a_n\}$满足$a_1=\dfrac{1}{2},a_n=\dfrac{a_n}{1+a_n^2}$,
试证明:(1)$a_n\leqslant \dfrac{3}{4\sqrt{n}}$;
(2)$a_n\leqslant \dfrac{n}{2(\sqrt{1}+\sqrt{2}+\cdots \sqrt{n})}$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-6-1 21:58
非常的简单,不码代码了

(1)当 n=1 不成立,当 n>=2 由 (1+2/n)^n>=4 即得

(2)由(1)得 S<=4/27+sum 1/(n+2)^2<4/27+sum 1/((n+1)(n+2))=13/27(求和是由2到正无穷)

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-6-1 22:05
,厉害了word色k!我还在绕来绕去的。回复 2# kuing

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-6-2 07:21
Last edited by 力工 2017-6-2 09:12这个结论好宽松,能加强吗?各位大侠!我先来一个简单的。
由$(n+2)^2>(n+1)(n+3)$,加强为$S<\dfrac{4}{27}+\dfrac{7}{24}<\dfrac{11}{25}$.
如果从重要极限看,可放缩成与$e$有关的式子。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-6-2 11:47
多保留几项,也不裂项放缩直接求极限,结论就会更紧了,不过没什么意思

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-6-2 21:17
外一的两问形式上的联系太直接。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-6-3 00:42
原来无声无息加了一题而且输入又有错……如果是 $a_{n+1}=\dfrac{a_n}{1+a_n^2}$ 的话,作个倒代换,数列就变成《撸题集》第993页题目 6.10.73

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit