Forgot password?
 Register account
View 1962|Reply 1

[几何] 转人教群之取值范围

[Copy link]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-6-2 06:51 |Read mode
Last edited by 乌贼 2017-6-2 07:28 211.png
$ \triangle ABC $中,$ AB=4\sqrt{2},BC=6,\angle ABC=\dfrac{\pi}4 $,$ D $为$ BC $上一动点,将$ \triangle ABC $沿着过点$ D $的直线折叠使点$ C $落在$ AB $上,则$ CD $的取值范围是。
因群里要求只用初中平几
只求最小值
如图:分别取$ BC、AC $中点$ E、F $,以$ EC $为直径作园,作平行于$ EF $的园切线交$ BC $于$ K $有\[ KE=\dfrac{3(\sqrt{2}-1)}{2}\]
$ P $为$ AB $上一动点,$ PC $分别交园切线、园、$ EF $于$ H、N、M $有\[ \dfrac{ED}{EC}=\dfrac{NM}{NC}\leqslant \dfrac{HM}{HC} =\dfrac{KE}{KC}\riff ED\leqslant 3\times \dfrac{\dfrac32\times (\sqrt{2}-1)}{\dfrac32\times (\sqrt{2}+1)}=9-6\sqrt{2}\\\riff CD\geqslant 6\sqrt{2}-6\]
最大值只上个图,$DF$为$AC$垂直平分线,用相似及勾股定理可求出各线段长度
212.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-6-2 10:25
还真有平面解释啊。。。不过$\dfrac{NM}{NC}\leqslant \dfrac{HM}{HC}$也没有那么容易。。

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit