|
数学解题之路QQ群里讨论的题目:
题目 若不等式$e^x \geqslant \ln (x + a)$对一切$x > -
a$都成立,求实数$a$的取值范围。
解 记$f (x) = e^x - \ln (x + a)$,求导$f' (x) = e^x - \frac{1}{x + a}$,由于$f' (x)$单调增加且$f' (- a) = - \infty$,$f' (+ \infty) = +\infty$ ,所以存在唯一实数$x_0$满足$e^{x_0} = \frac{1}{x_0 + a}$,而函数$f (x)$在$x_0$处取最小值$f (x_0) = e^{x_0} - \ln (x_0 + a) =\frac{1}{x_0 + a} - \ln (x_0 + a)$,只需$f (x_0) \geqslant 0$即$\frac{1}{x_0 + a} \geqslant \ln (x_0 + a)$即可。
记函数$g (x) = \frac{1}{x} - \ln x$, 则$g (x)$是$(0, +\infty)$上的减函数,它有唯一实数根$\lambda$满足$g (\lambda) = 0$, 即$\ln \lambda = \frac{1}{\lambda}$, 所以只要前述$x_0 + a \leqslant \lambda$就可以了, 也就是$e^{- x_0} \leqslant \lambda$, 从而$x_0 \geqslant - \ln \lambda$,于是只需$a = e^{- x_0} - x_0 \leqslant \lambda + \ln \lambda$就可以了,这便是实数$a$的取值范围。
下面来具体的求$\lambda$的近似值,$\lambda$满足方程$\ln \lambda = \frac{1}{\lambda}$,按牛顿迭代法,取初值$\lambda_0 = 1$,得迭代公式$\lambda_{n + 1} = \lambda_n - \frac{g (\lambda_n)}{g'(\lambda_n)} = \lambda_n - \frac{\lambda_n^2 \ln \lambda_n - \lambda_n}{1 +\lambda_n} = \frac{2 \lambda_n + \lambda_n^2 (1 - \ln \lambda_n)}{1 + \lambda_n}$, 编写scheme代码如下(foo-n)就是迭代n次后的$\lambda$,而(my-foo n)就是用$\lambda_n$算出的$\lambda + \ln \lambda = \lambda + \frac{1}{\lambda}$的值.- (define (foo-iter t n i)
- (if (= n i)
- t
- (foo-iter (/ (+ (* 2 t) (* t t (- 1 (log t)))) (+ 1 t)) n (+ i 1))))
- (define (foo n)
- (foo-iter 1 n 0))
- (define (my-foo n)
- (let ((x (foo n)))
- (+ x (/ 1 x))))
- (foo 500)
- (my-foo 500)
Copy the Code 结果$\lambda_{500} = 1.7632228343518965 \ldots$,利用它计算出的$a =2.3303661247616807 \ldots$. |
|