Forgot password?
 Register account
View 1958|Reply 8

[函数] 号外,号外!!!最新出炉:2017年全国理科试卷两题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2017-6-7 18:16 |Read mode
QQ图片20170607181544.png
各位大神们来看看!

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2017-6-7 18:18
回复 1# lemondian

看看有多少解法?

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-6-7 22:20
Last edited by 走走看看 2017-6-8 19:51不都是常规做法吗?
11 D
21(0,1)

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2017-6-8 07:14
回复 3# 走走看看


    写一个详细点的解法吧

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-6-8 07:45
Last edited by 力工 2017-6-8 07:5311是陈题啊。记得有个题是2^a=3^b=6^c,证什么1/a+1/b=2/c(大概意思,不是准确结论)[/img]
21含参分类讨论稍繁些,

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2017-6-8 12:55
回复 5# 力工
对于11题,我试了下指对互化,应该可以做到,答案应该是D。
但是有没有其它做法?
@力工:难道有一般的结论?

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-6-8 16:36

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-6-8 20:19
Last edited by 走走看看 2017-6-9 06:19回复 4# lemondian
$(1)f'(x)=2ae^{2x}+(a-2)e^{x}-1=(ae^x-1)(2e^x+1)$
$当a≤0时,f'(x)<0$
$当a>0时,x>-ln(a)时,f'(x)>0$
$当x<-ln(a)时,f'(x)<0$
$综上,当a≤0时,f(x)是单调递减函数$
$当a>0时,x∈(-∞,-ln(a))时是单调递减,$
$x∈(-ln(a),+∞)时单调递增。$
$(2)由题意知,f'(x)应有一个零点。$
$由(1)知,当a>0时,f(x)在x=-ln(a)上有极小值,也是最小值。$
$当x趋近+∞时,f(x)趋近+∞$
$当x趋近-∞时,f(x)也趋近+∞$
$所以,只要f(-ln(a))<0即可,$
$即f(-ln(a))=1-1/a+ln(a)<0。$
$当0<a<1时,1-1/a<0,ln(a)<0,所以1-1/a+ln(a)<0。$
$当a>1时,0<1/a<1,ln(a)>0,所以1-1/a+ln(a)>0。$
$当a=1时,1-1/a+ln(a)=0。$
$综上可知,满足条件的a的取值范围是(0,1)。$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-6-8 20:21
回复  lemondian

(1)f'(x)=2ae^(2x)+(a-2)e^x-1=(ae^x-1)(2e^x+1)
当a≤0时,f'(x)0时,x>-ln(a)时,f'(x ...
走走看看 发表于 2017-6-8 20:19
在式子的两端加上美元$\$$符号,就公式显示了。

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit