Forgot password?
 Register account
View 1655|Reply 5

[数列] 浙江2017年高考22题的拓展

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-6-14 08:06 |Read mode
做讲这题就是那点破方法,老师讲不出新意,大神们觉得可以拓展下吗?
已知$\{x_n\}$满足$x_1=1,x_n=x_{n+1}+ln(1+x_{n+1})$,求证:(1)$0<x_{n+1}<x_n$;(2)$2x_{n+1}-x_n\leqslant \dfrac{x_nx_{n+1}}{2}$;(3)$\dfrac{1}{2^{n-1}}\leqslant x_n\leqslant \dfrac{1}{2^{n-2}}$.

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-6-14 12:08
一般递推都喜欢用 $x_{n+1}=f(x_n)$,但这里却是相反的$x_n=f(x_{n+1})$,而且想要反解出$x_{n+1}=f^{-1}(x_n)$都做不到,这实际上涉及到隐函数,所以,从隐函数的角度来讨论下它,不知算不算新意。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-6-14 19:44
回复 2# zhcosin

这个觉得可以是反函数。由$x_n=f(x_{n+1})$递增,则$x_{n+1}=f^{-1}(x_n)$也递增,故$x_{n+1}<x_n$.
递推关系可以变一变吗?

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2017-6-14 22:36
$\frac{x}{\sqrt{1+x}}\le \ln{(1+x)}\le x$,或更紧凑的不等式能否直接处理(3)(如果没有2这个提示的话)。
递推关系修改为$x_n=x_{n+1}+\sin{x_{n+1}},x_1=1$等又如何?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-6-14 23:24
回复 1# 力工


    至少得把原证给出来吧?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2017-6-15 09:38
回复 5# isee

原证?其实与公布的答案差不多啊,所谓什么什么其实我觉得都一样,听着没点意思。

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit