Forgot password?
 Register account
View 4047|Reply 13

[不等式] 好象成立的样子

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-10-21 22:42 |Read mode
Last edited by hbghlyj 2025-5-6 08:57问一下这个不等式对不对?
\[
\begin{aligned}
& x, y, z \inR_+, x+y+z=3, n \geq 2, \\
& \Rightarrow \sqrt[n]{1+x^2}+\sqrt[n]{1+y^2}+\sqrt[n]{1+z^2} \geq 3 \sqrt[n]{2}
\end{aligned}
\]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-21 22:46
回复 1# realnumber
$n=2$时是对的吧,$n\geqslant3$可能就不对了吧?
妙不可言,不明其妙,不着一字,各释其妙!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-22 00:23
由半凹半凸定理,只要证二元相等的情形,变成一元函数后,画图看上去应该成立,至于证明……明天再想……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-22 12:43
由半凹半凸定理,只要证二元相等的情形,变成一元函数后,画图看上去应该成立,至于证明……明天再想…… ...
kuing 发表于 2013-10-22 00:23
又见半凹半凸!
只会证明$n=2$时是成立的。
妙不可言,不明其妙,不着一字,各释其妙!

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-10-22 12:53
n=2应该对的,写个证明,
引理:$f(x),g(x)$均为增函数,且$g(x)>0$,若$x\ge y\ge z,f(x)+f(y)+f(z)=0$,那么$M=f(x)g(x)+f(y)g(y)+f(z)g(z)\ge 0$
证明:易得$f(x)\ge 0,f(z)\le0$,$f(y)=-f(x)-f(z)$,
$M=f(x)g(x)-(f(x)+f(z))g(y)+f(z)g(z)=f(x)(g(x)-g(y))-f(z)(g(y)-g(z))\ge0$
所以引理成立.
n=2时,记\[ f(x)=x-1,g(x)=\frac{x+1}{\sqrt{1+x^2}+\sqrt{2}}\],符合引理,所以n=2时,1楼不等式成立.
很可惜n=3时,相应的$g(x)$不是增函数,

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-10-22 12:59
回复 4# 其妙

也许别的办法可以绕过“凹凸慢”

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-22 13:47
n=2 时闵可夫斯基不等式一步到位……n>2 就用不了了。
PS、半凹半凸定理的3元情形我曾经在旧版论坛具体介绍过,处理这种比较一般情的问题相对通用一些。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-22 21:59
先证明$n=2$成立,楼主和kk都用了新颖的证法,我这里来常规的证法(补充4楼):
      由柯西不等式,$1+x^2\geqslant\dfrac{(1+x)^2}2$,故$\sqrt{1+x^2}\geqslant\dfrac{1+x}{\sqrt2}$,当且仅当$x=1$取等号。

于是,$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\geqslant\dfrac{1+x+1+y+1+z}{\sqrt2}=3\sqrt2$.
     闵可夫斯基的可用向量的模解释吧,
,$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\geqslant\sqrt{(1+1+1)^2+(x+y+z)^2}=3\sqrt2$.
妙不可言,不明其妙,不着一字,各释其妙!

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-22 22:10
n=2应该对的,写个证明,
引理:$f(x),g(x)$均为增函数,且$g(x)>0$,若$x\ge y\ge z,f(x)+f(y)+f(z)=0$,那 ...
realnumber 发表于 2013-10-22 12:53
你那个引理,就是切比雪夫吧?
需要$g(x)>0$的条件?$g(x)>0$的条件可以取消吗?
妙不可言,不明其妙,不着一字,各释其妙!

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-10-23 09:49
回复 9# 其妙


    切比雪夫--不熟悉,
从证明过程看,确实可以取消

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-10-23 21:13
1楼不等式在n=3(也许还有别的)是成立的,画图估计可以用切线法证明,
但n足够大,几何画板实验发现不成立

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-23 21:18
回复 11# realnumber
你用切线法试一试:
妙不可言,不明其妙,不着一字,各释其妙!

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-10-23 21:29
Last edited by realnumber 2013-10-24 07:57回复 12# 其妙


    n=3$f(x)=(1+x^2)^\frac{1}{n}$在x=1处的切线为$g(x)=\frac{1}{n}2^\frac{1}{n}(x-1)+2^\frac{1}{n}$,$0<x<3$
要证明$f(x)\ge g(x)$等价于证明
\[\frac{1+x^2}{2}\ge (\frac{x}{n}+1-\frac{1}{n})^n,0<x<3,n=3\]
即\[\frac{1+x^2}{2}\ge (\frac{x}{3}+\frac{2}{3})^3,0<x<3,\]
后面应该没什么大问题的,猜是数据不会凑得太好.---试了下,这样t=x-1,运算可以引入立方差什么的简化.

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2013-10-23 22:34
Last edited by realnumber 2013-10-24 07:28 QQ截图201310232110554545435345--.GIF
x=1的左边偏离x轴比右边大,猜测个切线法的改进办法,这个会不会可以因此绕过半凹半凸?也是尝试过程这个中发现11楼反例
假设$y=f(x)$在x=1处的切线为g(x)=kx+b,在x>1时有f(x)>g(x),但是在x<1时,f(x)与g(x)大小关系不定
若满足这样的条件(大家想想怎样改进会更宽泛点,我也不能确定对不对)$f(1+t)-g(1+t)\ge 2\abs{f(1-t)-g(1-t)},t\ge0$---①(似乎这里2有些多余,已经混乱中...)
又x+y+z=3,则有$f(x)+f(y)+f(z)\ge 3f(1)$---②;当然①反向的话,②也反向.

Mobile version|Discuz Math Forum

2025-6-5 18:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit