Forgot password?
 Create new account
View 3876|Reply 13

[不等式] 好象成立的样子

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-10-21 22:42:08 |Read mode
郑州-杨**(1223*****) 21:48:34
问一下这个不等式对不对? QQ图片201310212239523232323天天.jpg

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-21 22:46:57
回复 1# realnumber
$n=2$时是对的吧,$n\geqslant3$可能就不对了吧?
妙不可言,不明其妙,不着一字,各释其妙!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-22 00:23:39
由半凹半凸定理,只要证二元相等的情形,变成一元函数后,画图看上去应该成立,至于证明……明天再想……

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-22 12:43:46
由半凹半凸定理,只要证二元相等的情形,变成一元函数后,画图看上去应该成立,至于证明……明天再想…… ...
kuing 发表于 2013-10-22 00:23

又见半凹半凸!
只会证明$n=2$时是成立的。
妙不可言,不明其妙,不着一字,各释其妙!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-10-22 12:53:55
n=2应该对的,写个证明,
引理:$f(x),g(x)$均为增函数,且$g(x)>0$,若$x\ge y\ge z,f(x)+f(y)+f(z)=0$,那么$M=f(x)g(x)+f(y)g(y)+f(z)g(z)\ge 0$
证明:易得$f(x)\ge 0,f(z)\le0$,$f(y)=-f(x)-f(z)$,
$M=f(x)g(x)-(f(x)+f(z))g(y)+f(z)g(z)=f(x)(g(x)-g(y))-f(z)(g(y)-g(z))\ge0$
所以引理成立.
n=2时,记\[ f(x)=x-1,g(x)=\frac{x+1}{\sqrt{1+x^2}+\sqrt{2}}\],符合引理,所以n=2时,1楼不等式成立.
很可惜n=3时,相应的$g(x)$不是增函数,

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-10-22 12:59:22
回复 4# 其妙

也许别的办法可以绕过“凹凸慢”

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-22 13:47:08
n=2 时闵可夫斯基不等式一步到位……n>2 就用不了了。
PS、半凹半凸定理的3元情形我曾经在旧版论坛具体介绍过,处理这种比较一般情的问题相对通用一些。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-22 21:59:38
先证明$n=2$成立,楼主和kk都用了新颖的证法,我这里来常规的证法(补充4楼):
      由柯西不等式,$1+x^2\geqslant\dfrac{(1+x)^2}2$,故$\sqrt{1+x^2}\geqslant\dfrac{1+x}{\sqrt2}$,当且仅当$x=1$取等号。

于是,$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\geqslant\dfrac{1+x+1+y+1+z}{\sqrt2}=3\sqrt2$.
     闵可夫斯基的可用向量的模解释吧,
,$\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}\geqslant\sqrt{(1+1+1)^2+(x+y+z)^2}=3\sqrt2$.
妙不可言,不明其妙,不着一字,各释其妙!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-22 22:10:13
n=2应该对的,写个证明,
引理:$f(x),g(x)$均为增函数,且$g(x)>0$,若$x\ge y\ge z,f(x)+f(y)+f(z)=0$,那 ...
realnumber 发表于 2013-10-22 12:53

你那个引理,就是切比雪夫吧?
需要$g(x)>0$的条件?$g(x)>0$的条件可以取消吗?
妙不可言,不明其妙,不着一字,各释其妙!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-10-23 09:49:01
回复 9# 其妙


    切比雪夫--不熟悉,
从证明过程看,确实可以取消

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-10-23 21:13:53
1楼不等式在n=3(也许还有别的)是成立的,画图估计可以用切线法证明,
但n足够大,几何画板实验发现不成立

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-23 21:18:02
回复 11# realnumber
你用切线法试一试:
妙不可言,不明其妙,不着一字,各释其妙!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-10-23 21:29:19
Last edited by realnumber at 2013-10-24 07:57:00回复 12# 其妙


    n=3$f(x)=(1+x^2)^\frac{1}{n}$在x=1处的切线为$g(x)=\frac{1}{n}2^\frac{1}{n}(x-1)+2^\frac{1}{n}$,$0<x<3$
要证明$f(x)\ge g(x)$等价于证明
\[\frac{1+x^2}{2}\ge (\frac{x}{n}+1-\frac{1}{n})^n,0<x<3,n=3\]
即\[\frac{1+x^2}{2}\ge (\frac{x}{3}+\frac{2}{3})^3,0<x<3,\]
后面应该没什么大问题的,猜是数据不会凑得太好.---试了下,这样t=x-1,运算可以引入立方差什么的简化.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2013-10-23 22:34:50
Last edited by realnumber at 2013-10-24 07:28:00 QQ截图201310232110554545435345--.GIF
x=1的左边偏离x轴比右边大,猜测个切线法的改进办法,这个会不会可以因此绕过半凹半凸?也是尝试过程这个中发现11楼反例
假设$y=f(x)$在x=1处的切线为g(x)=kx+b,在x>1时有f(x)>g(x),但是在x<1时,f(x)与g(x)大小关系不定
若满足这样的条件(大家想想怎样改进会更宽泛点,我也不能确定对不对)$f(1+t)-g(1+t)\ge 2\abs{f(1-t)-g(1-t)},t\ge0$---①(似乎这里2有些多余,已经混乱中...)
又x+y+z=3,则有$f(x)+f(y)+f(z)\ge 3f(1)$---②;当然①反向的话,②也反向.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list