Forgot password
 Register account
View 2019|Reply 6

[不等式] 一道多变量范围试题

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2017-6-23 19:25 |Read mode
16-17盐城市高二期末考试试题
已知$a>0,b>0,0<c<2,ac^2+b–c=0$,求$\dfrac1a+\dfrac1b$的取值范围。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-6-23 20:05
有难度咩?

易知 $a$ 可以趋向 $0$ 所以无最大值,最小值由
\[\frac1a+\frac1b=\frac{c^2}{ac^2}+\frac1b\geqslant
\frac{(c+1)^2}{ac^2+b}=\frac{(c+1)^2}c\geqslant 4,\]
当 $a=b=1/2$, $c=1$ 时取等。

PS、又见全角减号。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-6-23 22:55
回复 2# kuing


     不用介意,楼主基本上是问完就走的,,,,,,

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-6-23 23:08
搞个学生喜欢的——

$$ac^2+b-c=0\iff ac+\frac bc=1.$$于是$$\frac 1a+\frac 1b=\left(\frac 1a+\frac 1b\right)\left(ac+\frac bc\right)=c+\frac {ac}b+\frac b{ac}+\frac 1c\geqslant 4.$$

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-6-23 23:55
回复 4# isee

要学生喜欢的话,这样可能更好:
\[c=ac^2+b\ge2\sqrt{ab}c\riff \sqrt{ab}\le\frac12\riff \frac1a+\frac1b\ge\frac2{\sqrt{ab}}\ge4.\]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-6-24 10:55
回复 5# 色k


    嗯,实际是调和均值,也自然……

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2017-6-24 21:37
回复 2# kuing
不好意思,谢谢kuing!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:17 GMT+8

Powered by Discuz!

Processed in 0.012520 seconds, 22 queries