Forgot password?
 Register account
View 1768|Reply 1

[不等式] 一个三角形中的边角不等式

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-6-28 22:55 |Read mode
在$\triangle ABC$中,证明:$$\sum_{A,B,C}((2sinA-\sqrt{3})b^3c^3)\leqslant 0$$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-6-29 13:42
原来很简单,而且次数可推广。

显然 $(x-y)(x^k-y^k)\geqslant 0$ 对任意正数 $k$, $x$, $y$ 恒成立,即
\[\frac{x-y}{x^k}\leqslant \frac{x-y}{y^k},\]
令 $y=\sin60\du$,再令 $x=\sin A$ 等相加得
\[\sum\frac{\sin A-\sin60\du}{\sin^kA}\leqslant \frac{\sin A+\sin B+\sin C-3\sin60\du}{\sin^k60\du}\leqslant 0,\]

\[\sum(\sin A-\sin60\du)\sin^kB\sin^kC\leqslant 0,\]

\[\sum\bigl(2\sin A-\sqrt3\bigr)b^kc^k\leqslant 0.\]

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit