发网友的解答,网友说的方法,我用软件算的,但完全看不懂 - pA1={1,0,0};pA2={0,1,0};pA3={0,0,1};pI={a,b,c};
- pB1=Cross[Cross[pA1,pI], Cross[pA2,pA3]];
- pB2=Cross[Cross[pA2,pI], Cross[pA1,pA3]];
- pB3=Cross[Cross[pA3,pI], Cross[pA1,pA2]];
- pC2=Cross[Cross[pB1,pB3], Cross[pA2,pB2]];
- pC3=Cross[Cross[pB1,pB2], Cross[pA3,pB3]];
- f[x_,y_,z_] := a^2y z+b^2z x+c^2x y+(x+y+z)(p x+q y+r z)
Copy the Code 最后一步是解方程组:- Solve[f[pB2[[1]], pB2[[2]], pB2[[3]]] == 0 &&
- f[pB3[[1]], pB3[[2]], pB3[[3]]] == 0 &&
- f[pC2[[1]], pC2[[2]], pC2[[3]]] == 0 &&
- f[pC3[[1]], pC3[[2]], pC3[[3]]] == 0 && a > 0 && b > 0 && c > 0, {p, q, r, a}]
Copy the Code 解出来$a=\sqrt{b^2+bc+c^2}$,也就是$120^\circ$。 |