|
kuing
Posted 2017-7-14 03:28
下面证明原不等式对任意 $a$, $b$, $c\inR$ 都成立。
如果 $abc=0$ 则不等式显然成立,下设 $abc\ne0$,令 $ab=z$, $bc=x$, $ca=y$,则
\begin{align*}
\LHS-\RHS&=\sum\frac{z^2(x+y)^2}{x^2+y^2}-2\sum xy \\
&=\sum x^2-\sum xy+\sum\frac{2xyz^2}{x^2+y^2}-\sum xy \\
&=\frac12\sum(x-y)^2+\sum\frac{xy(2z^2-x^2-y^2)}{x^2+y^2} \\
&=\frac12\sum(x-y)^2+\sum\left( \frac{yz(x^2-y^2)}{y^2+z^2}+\frac{zx(y^2-x^2)}{z^2+x^2} \right),
\end{align*}
运气极好地,我们有如下等式
\[\frac12(x-y)^2+\frac{yz(x^2-y^2)}{y^2+z^2}+\frac{zx(y^2-x^2)}{z^2+x^2}
=\frac{(x-y)^2(xy+yz+zx-z^2)^2}{2(y^2+z^2)(z^2+x^2)},\]
显然在实数范围内都非负,即得证。 |
|