Forgot password?
 Register account
View 1581|Reply 4

[不等式] 水一波 要求用均值 我也是无语

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-7-15 19:11 |Read mode
Last edited by v6mm131 2017-7-15 20:23已知$a>0,b>0,a+b=1$,求$\frac{a}{a^2+1}+\frac{b}{b^2+1}$的最大值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-7-15 21:01
纯均值,即使非要二元的,也很容易啊
\[\frac a{a^2+1}=\frac{4a}{4a^2+1+3}\le\frac{4a}{4a+3}=1-\frac3{4a+3},\]
所以
\begin{align*}
\text{原式}&\le2-3\left(\frac1{4a+3}+\frac1{4b+3}\right)\\
&=2-\frac3{10}(4a+3+4b+3)\left(\frac1{4a+3}+\frac1{4b+3}\right)\\
&=2-\frac3{10}\left(2+\frac{4a+3}{4b+3}+\frac{4b+3}{4a+3}\right)\\
&\le2-\frac3{10}(2+2)\\
&=\frac45,
\end{align*}
当且仅当 $a=b=1/2$ 取等。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-7-15 23:22
666

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-7-16 12:13
或者酱
\[\frac a{a^2+1}=\frac{4a}{4a^2+1+3}\le\frac{4a}{4a+3}=1-\frac3{4a+3}
=1+\frac3{25}(4a+3)-\left(\frac3{4a+3}+\frac3{25}(4a+3)\right)
\le1+\frac3{25}(4a+3)-\frac65=\frac4{25}(3a+1),\]
相当于用二元均值把切线法的不等式证出来。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-7-16 21:39
学习了

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit