Forgot password
 Register account
View 1590|Reply 4

[不等式] 水一波 要求用均值 我也是无语

[Copy link]

72

Threads

96

Posts

0

Reputation

Show all posts

v6mm131 posted 2017-7-15 19:11 |Read mode
Last edited by v6mm131 2017-7-15 20:23已知$a>0,b>0,a+b=1$,求$\frac{a}{a^2+1}+\frac{b}{b^2+1}$的最大值

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-7-15 21:01
纯均值,即使非要二元的,也很容易啊
\[\frac a{a^2+1}=\frac{4a}{4a^2+1+3}\le\frac{4a}{4a+3}=1-\frac3{4a+3},\]
所以
\begin{align*}
\text{原式}&\le2-3\left(\frac1{4a+3}+\frac1{4b+3}\right)\\
&=2-\frac3{10}(4a+3+4b+3)\left(\frac1{4a+3}+\frac1{4b+3}\right)\\
&=2-\frac3{10}\left(2+\frac{4a+3}{4b+3}+\frac{4b+3}{4a+3}\right)\\
&\le2-\frac3{10}(2+2)\\
&=\frac45,
\end{align*}
当且仅当 $a=b=1/2$ 取等。

72

Threads

96

Posts

0

Reputation

Show all posts

original poster v6mm131 posted 2017-7-15 23:22
666

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-7-16 12:13
或者酱
\[\frac a{a^2+1}=\frac{4a}{4a^2+1+3}\le\frac{4a}{4a+3}=1-\frac3{4a+3}
=1+\frac3{25}(4a+3)-\left(\frac3{4a+3}+\frac3{25}(4a+3)\right)
\le1+\frac3{25}(4a+3)-\frac65=\frac4{25}(3a+1),\]
相当于用二元均值把切线法的不等式证出来。

72

Threads

96

Posts

0

Reputation

Show all posts

original poster v6mm131 posted 2017-7-16 21:39
学习了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:31 GMT+8

Powered by Discuz!

Processed in 0.011576 seconds, 23 queries