Forgot password?
 Register account
View 1851|Reply 2

[不等式] $abc=1$ 型不等式一条

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-7-22 19:54 |Read mode
已知$a,b,c>0,abc=1$证明:\[\frac{1}{a^2-a+1}+\frac{1}{b^2-b+1}+\frac{1}{c^2-c+1}\le 3\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-7-22 20:27
因为
\[\frac1{a^2-a+1}=2-\frac1{a^2+a+1}-\frac{2a^4}{a^4+a^2+1}
=2-\frac1{a^2+a+1}-\frac2{(a^{-2})^2+(a^{-2})+1},\]
注意 $\prod a^{-2}=\prod a=1$,可见只需证明
\[\sum\frac1{a^2+a+1}\geqslant1\]
即可,令 $a=xy/z^2$ 等,则
\[\sum\frac1{a^2+a+1}=\frac{z^4}{x^2y^2+xyz^2+z^4}
\geqslant\frac{(x^2+y^2+z^2)^2}{\sum(x^2y^2+xyz^2+z^4)}
\geqslant\frac{(x^2+y^2+z^2)^2}{\sum(2x^2y^2+z^4)}=1,\]
即得证。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-7-22 20:28
回复 2# kuing
牛逼啊!

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit