Forgot password?
 Register account
View 1911|Reply 3

[不等式] 来自某网友的四元不等式$\sum\frac a{1-a^2}\le$

[Copy link]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2017-7-24 15:24 |Read mode
Last edited by hbghlyj 2025-5-9 21:23
雪娃娃(6579*****) 13:18:44
$a \cdot b, c, d \geqslant 0, a^2+b^2+c^2+d^2=1$,求证: $\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}+\frac{d}{1-d^2} \geqslant \frac{3 \sqrt{3}}{2}$
由均值
\[\frac a{1-a^2}=\frac{\sqrt2a^2}{\sqrt{2a^2(1-a^2)(1-a^2)}}\geqslant \frac{\sqrt2a^2}{\sqrt{\bigl( \frac{2a^2+1-a^2+1-a^2}3 \bigr)^3}}=\frac{3\sqrt3}2a^2, \]
求和即得。

注:其实我用的是切线法,只不过写的时候写成纯均值而已,这是擦除思考痕迹的基本手法。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-7-24 19:31
这就是把原来三元的改成了四元

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2017-7-24 20:38
由均值
\[\frac a{1-a^2}=\frac{\sqrt2a^2}{\sqrt{2a^2(1-a^2)(1-a^2)}}\geqslant \frac{\sqrt2a^2}{\sqrt ...
kuing 发表于 2017-7-24 15:24
哎,终于有个不等式的证明,我看懂了。。。。。

13

Threads

901

Posts

110K

Credits

Credits
12272

Show all posts

色k Posted 2017-7-25 00:47
回复 2# v6mm131

这题确实是三元以上结果都一样,取等条件都是三个为 $1/\sqrt3$ 其余全为零。

Mobile version|Discuz Math Forum

2025-6-6 02:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit