Forgot password?
 Register account
View 5113|Reply 23

[不等式] $abc=1,(a+b+c)^2\sum\frac1{a^2+2}\ge9$

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-7-25 15:43 |Read mode
已知$a,b,c>0$,满足$abc=1$,证明:\[(a+b+c)^2(\dfrac{1}{a^2+2}+\dfrac{1}{b^2+2}+\dfrac{1}{b^2+2})\ge 9\]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-7-26 20:46
回复 1# v6mm131
很简单,只需证明$ab+bc+ca\geqslant 3$.

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-7-26 21:16

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-7-27 12:46
回复 2# 力工

试试这个加强?:
\[(a+b+c)\left( \frac1{a^2+2}+\frac1{b^2+2}+\frac1{c^2+2} \right)\geqslant3.\]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-7-27 17:00
安振平老师 放在期刊上的不等式好水  怪不得kk懒得动笔

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-7-27 17:11
4楼那加强其实还是有点弱的,你们不妨试试证下,或者继续加强

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-7-27 18:00
下面的加强也是成立的
\[(ab+bc+ca)\left( \frac1{a^2+2}+\frac1{b^2+2}+\frac1{c^2+2} \right)\geqslant3.\]

它和4楼的加强不分强弱

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-7-27 18:13
这根本是不等式在玩我,路过路过,你们继续。。。。。。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-7-28 00:05
怎么没人撸……

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-2 09:58
回复 9# 色k

7楼的强一些吧

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-2 10:18
Last edited by v6mm131 2017-8-2 10:31回复 4# kuing


不妨令$a=\frac{x^2}{yz},b=\frac{y^2}{zx},c=\frac{z^2}{xy}$则原不等式可化为:
\[\frac{(x^3+y^3+z^3)}{xyz}(\frac{y^2z^2}{x^4+2y^2z^2}+\frac{z^2x^2}{y^4+2z^2x^2}+\frac{x^2y^2}{z^4+2x^2y^2})\ge 3\]
由柯西不等式:
\[\frac{y^2z^2}{x^4+2y^2z^2}+\frac{z^2x^2}{y^4+2z^2x^2}+\frac{x^2y^2}{z^4+2x^2y^2}\ge \frac{(xy+yz+zx)^2}{(x^2+y^2+z^2)^2}\]
故只需要证明:\[(x^3+y^3+z^3)(xy+yz+zx)^2\ge 3xyz(x^2+y^2+z^2)^2\]
因为$(xy+yz+zx)^2\ge 3xyz(x+y+z)$
所以$(x^3+y^3+z^3)(xy+yz+zx)^2\ge  3xyz(x+y+z)(x^3+y^3+z^3)\ge 3xyz(x^2+y^2+z^2)^2$ 证毕!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-2 12:31
a+b+c 与 ab+bc+ca 的大小关系不确定,所以4楼7楼不分强弱。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-2 12:33
回复 11# v6mm131

4楼的就是这样证,很简单吧
这个证明过程放缩了三次(两个CS和一个AG),由此估计不等式并不强。

7楼的也可以类似地证,再试试?

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-2 23:38
回复 13# kuing

    用Can的不等式:$x,y,z$是正数时,
\[(x+y+z)^2(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}) \ge 9(x^2+y^2+z^2)\]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-2 23:42
回复 13# kuing


   版主有简单做法吗?

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-3 00:36
回复 13# kuing


    kk有避免SOS的方法没有?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-3 00:41

    用Can的不等式:$x,y,z$是正数时,
\[(x+y+z)^2(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}) \ge 9(x^2+y^2+z^2)\]
v6mm131 发表于 2017-8-2 23:38
soga,这个不错,统一解决那两个加强,可惜这个不等式知道的人可能不多。

我的证法仍然是用那种代换以及CS、AG,等会再写。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-3 00:47
回复 7# kuing

令 $a=yz/x^2$, $b=zx/y^2$, $c=xy/z^2$, $x$, $y$, $z>0$,则由 CS 及 AG 有
\begin{align*}
(ab+bc+ca)\sum\frac1{a^2+2}&=\frac{x^3+y^3+z^3}{xyz}\sum\frac{x^4}{y^2z^2+2x^4} \\
&\geqslant \frac{x^3+y^3+z^3}{xyz}\cdot \frac{(x^2+y^2+z^2)^2}{\sum(y^2z^2+2x^4)} \\
&=\frac{(x^3+y^3+z^3)(x+y+z)}{xyz(x+y+z)}\cdot \frac{(x^2+y^2+z^2)^2}{\sum(y^2z^2+2x^4)} \\
&\geqslant \frac{(x^2+y^2+z^2)^2}{\sum y^2z^2}\cdot \frac{(x^2+y^2+z^2)^2}{\sum(y^2z^2+2x^4)} \\
&=\frac{12(x^2+y^2+z^2)^4}{4\sum3y^2z^2\sum(y^2z^2+2x^4)} \\
&\geqslant \frac{12(x^2+y^2+z^2)^4}{\bigl( \sum3y^2z^2+\sum(y^2z^2+2x^4) \bigr)^2} \\
&=3.
\end{align*}

可以看到,也是放缩了几次,还是很轻松的。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-3 00:55
回复 18# kuing


    牛逼!

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-3 20:31
kk see
\[\sqrt{\frac{1}{a^3+2a}}+\sqrt{\frac{1}{b^3+2b}}+\sqrt{\frac{1}{c^3+2c}}\ge \sqrt{3}\]

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit