Forgot password?
 Register account
View 1779|Reply 3

[不等式] 三元不等式一条

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-8-3 07:23 |Read mode
已知$a,b,c \ge 0$,满足$a^3+b^3+c^3+abc=8$,证明:\[a^2+b^2+c^2\ge 4\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-3 10:39
不动脑地 baoli 一下:
\[
(a^2 + b^2 + c^2)^3 - (a^3 + b^3 + c^3 + a b c)^2
=\sum(a^4 + b^2 c^2) (b - c)^2+\sum a^4(b^2+c^2)+5a^2b^2c^2
\geqslant0
\]
在实数范围内成立

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-3 11:13
还可以加强为:已知 $a$, $b$, $c\geqslant 0$ 满足 $a^3+b^3+c^3+3\bigl(\sqrt3-1\bigr)abc\geqslant 8$,则 $a^2+b^2+c^2\geqslant 4$。(注:由于 $3\bigl(\sqrt3-1\bigr)\approx 2.196$ 所以强于原题。)

证明可参考《撸题集》第 897 页题目 6.7.10(那里的证明更加 baoli )。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-3 12:03
回复 3# kuing

Mobile version|Discuz Math Forum

2025-5-31 11:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit