|
Last edited by hbghlyj 2025-3-21 20:45题目
设连续的单调函数$f$:$\left( -1,+\infty \right)\to \left( -1,+\infty \right)$,$f\left( 0 \right)=0$,且满足$f\left[ x+f\left( y \right)+xf\left( y \right) \right]\geqslant y+f\left( x \right)+yf\left( x \right)$,对$\forall x$,$y\in \left( -1,+\infty \right)$
试求$f\left( x \right)$.
答案
$f\left( x \right)=-\frac{x}{1+x}$;$f\left( x \right)=x$.
解析
因为$f\left( x \right)$是连续的单调函数.又$f\left( 0 \right)=0$,所以$f\left( x \right)$在零点两边符号相反,且$y\to 0$时.$f\left( y \right)\to 0$,$x+f\left( y \right)+xf\left( y \right)-x\to 0$.\[f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)\geqslant y\left[ 1+f\left( x \right) \right]\]当$y>0$时,\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)+xf\left( y \right)}{y}\geqslant 1+f\left( x \right)\]由$1+x>0$,得\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)}{y}\geqslant \frac{1+f\left( x \right)}{1+x}\]令$y\to 0$,得\[{{f}^{\prime}}\left( x \right){{f}^{\prime}}\left( 0 \right)\geqslant \frac{1+f\left( x \right)}{1+x}\]当$-1 < y < 0$时,\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)+xf\left( y \right)}{y}\leqslant 1+f\left( x \right)\]由$1+x>0$,得\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)}{y}\leqslant \frac{1+f\left( x \right)}{1+x}\]令$y\to 0$,得\[{{f}^{\prime}}\left( x \right){{f}^{\prime}}\left( 0 \right)\leqslant \frac{1+f\left( x \right)}{1+x}\]从而有了\[{{f}^{\prime}}\left( x \right){{f}^{\prime}}\left( 0 \right)=\frac{1+f\left( x \right)}{1+x}\]记${{f}^{\prime}}\left( 0 \right)=a$,上式化为$a\left( 1+x \right){{f}^{\prime}}\left( x \right)=1+f\left( x \right)\]当${{f}^{\prime}}\left( 0 \right)=0$时,$1+f\left( x \right)=0$,所以$f\left( x \right)\equiv -1$,不是单调函数,舍去.
当${{f}^{\prime}}\left( 0 \right)\ne 0$时,上式化为$a\left( 1+x \right){{f}^{\prime}}\left( x \right)-f\left( x \right)=1$,①
于是,\[{{\left[ {{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}f\left( x \right) \right]}^{\prime}}={{\left[ {{\left( 1+x \right)}^{-\frac{1}{a}}}f\left( x \right) \right]}^{\prime}}\]\[={{\left( 1+x \right)}^{-\frac{1}{a}}}{{f}^{\prime}}\left( x \right)-\frac{1}{a}{{\left( 1+x \right)}^{-\frac{1}{a}-1}}f\left( x \right)\]\[=\frac{1}{a}{{\left( \frac{1}{1+x} \right)}^{1+\frac{1}{a}}}\left[ a\left( 1+x \right){{f}^{\prime}}\left( x \right)-f\left( x \right) \right]\]即\[{{\left[ {{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}f\left( x \right) \right]}^{\prime}}=\frac{1}{a}{{\left( \frac{1}{1+x} \right)}^{1+\frac{1}{a}}}\]\[{{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}f\left( x \right)=\int{\frac{1}{a}{{\left( \frac{1}{1+x} \right)}^{1+\frac{1}{a}}}}dx=-{{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}+c\]\[f\left( x \right)=c{{\left( 1+x \right)}^{\frac{1}{a}}}-1\]
由$f\left( 0 \right)=0$,得$c=1$,由${{f}^{\prime}}\left( 0 \right)=a$,在①中取$x=0$代入,得${{a}^{2}}=1$,即$a=-1$或$a=1$.
当$a=-1$时,$f\left( x \right)={{\left( 1+x \right)}^{-1}}-1=-\frac{x}{1+x}$;
当$a=1$时,$f\left( x \right)=\left( 1+x \right)-1=x$.
综上,所给函数不等式的解是$f\left( x \right)=-\frac{x}{1+x}$;$f\left( x \right)=x$.
经验证:所求的两个解均为原函数不等式的解. |
|