Forgot password?
 Register account
View 2823|Reply 10

[函数] 一道求抽象函数的解析式的题目(据说达到IMO级别)

[Copy link]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-8-15 19:13 |Read mode
Last edited by hbghlyj 2025-3-21 20:35设连续的单调函数 $f:(-1,+\infty) \to(-1,+\infty), f(0)=0$,且满足 $f[x+f(y)+x f(y)] \geq y+f(x)+y f(x), \forall x, y \in(-1,+\infty)$.试求函数 $f(x)$ 的解析式.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2017-8-17 19:19
大家先猜猜有哪两个函数符合题意?
然后再猜一下分段函数

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-8-17 20:08
回复 3# 其妙

$f(x)=x$ and $f(x)=-\dfrac{x}{1+x}$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2017-8-17 20:31
回复 4# v6mm131
牛!
再猜一下分段函数可不可能,

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-9-6 15:20
Last edited by zhcosin 2017-9-6 16:01这题不好搞,在题目不等式中取$x=0$得到下式恒成立
\[ f(f(y)) \geqslant y \]
如果函数$f(x)$是增函数的话,就必有$f(x) \geqslant x$,因为如果有某个$x_0$使得$f(x_0)<x_0$,那由单调增就有$f(f(x_0))<f(x_0)<x_0$与上式矛盾,所以在增函数的条件下一定有$f(x) \geqslant x$.但对于减函数的情形似乎难以得到类似的结论。

题目之所以难是因为条件中是不等式,那先降低难度,考虑一下如果是等式会怎样,也就是
\[ f(x+f(y)+xf(y)) = y+f(x)+yf(x) \]
因为$f(x)$单调,所以必有反函数,再假设$f(x)$为满射(似乎题意也要求如此),于是在上式中将$y$替换为$f^{-1}(y)$,就成为
\[ f(x+y+xy)=f(x)+f^{-1}(y)+f(x)f^{-1}(y) \]
互换$x$和$y$,又得
\[ f(x+y+xy)=f^{-1}(x)+f(y)+f^{-1}(x)f(y) \]
于是
\[ f(x)+f^{-1}(y)+f(x)f^{-1}(y) = f^{-1}(x)+f(y)+f^{-1}(x)f(y) \]
整理即得
\[ \frac{f(x)-f^{-1}(x)}{1+f(x)}=\frac{f(y)-f^{-1}(y)}{1+f(y)} \]
因为$x$和$y$是任意的,所以上式意味着
\[  \frac{f(x)-f^{-1}(x)}{1+f(x)}=C \]
右端$C$是常数,但$f(0)=f^{-1}(0)=0$,所以$C=0$,于是得
\[ f(x)=f^{-1}(x) \]
这表明函数$f(x)$的图象是关于直线$y=x$对称的. 将它代回前面的等式就得到
\[ f(x+y+xy)=f(x)+f(y)+f(x)f(y) \]
这个方程很漂亮,可是,似乎也难以转化为柯西方程,到这又没戏了。。。。。

既然还是难,那就进一步加条件,假设函数$f(x)$不但连续,还是一阶可导的,那么有
\[ \frac{f(x+y+xy)-f(x)}{y+xy} = \frac{1+f(x)}{(1+x)} \cdot \frac{f(y)}{y} \]
两边令$y \to 0$,就有
\[ f'(x) =  \frac{1+f(x)}{(1+x)}  \cdot f'(0) \]
这是一个微分方程,至于其中的常数$f'(0)$,因为$f(x)=f^{-1}(x)$,所以必然有$f'(0)=1$或者$f'(0)=-1$,方程变形为
\[ \frac{y'}{1+y} = C \cdot \frac{1}{1+x} \]
其中$C=1$或者$C=-1$两边积分得
\[ \ln{(1+y)} = C \ln{(1+x)}+C' \]
这里$C'$是积分常数,所以得到
\[ y= e^{C'} \cdot (1+x)^C - 1 \]
由$f(0)=0$得$C'=0$,所以
\[ f(x)=(1+x)^C-1 \]
其中$C=1$或者$C=-1$,分别对应着$f(x)=x$与$f(x)=-\frac{x}{1+x}$,但是要注意,这是在加强了条件(不等式改等式并且要求函数一阶可导)得出的结果.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2017-9-24 14:26
Last edited by hbghlyj 2025-3-21 20:36
要不要开个新帖?
问题:求所有函数 $f: R_{+} \to R_{+}$,使得对任意实数 $x, y>0$ ,有 $x^2(f(x)+f(y))=(x+y) f(f(x) y)$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-16 16:08
Last edited by hbghlyj 2025-3-21 20:45题目
设连续的单调函数$f$:$\left( -1,+\infty \right)\to \left( -1,+\infty \right)$,$f\left( 0 \right)=0$,且满足$f\left[ x+f\left( y \right)+xf\left( y \right) \right]\geqslant y+f\left( x \right)+yf\left( x \right)$,对$\forall x$,$y\in \left( -1,+\infty \right)$
试求$f\left( x \right)$.

答案
$f\left( x \right)=-\frac{x}{1+x}$;$f\left( x \right)=x$.

解析
因为$f\left( x \right)$是连续的单调函数.又$f\left( 0 \right)=0$,所以$f\left( x \right)$在零点两边符号相反,且$y\to 0$时.$f\left( y \right)\to 0$,$x+f\left( y \right)+xf\left( y \right)-x\to 0$.\[f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)\geqslant y\left[ 1+f\left( x \right) \right]\]当$y>0$时,\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)+xf\left( y \right)}{y}\geqslant 1+f\left( x \right)\]由$1+x>0$,得\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)}{y}\geqslant \frac{1+f\left( x \right)}{1+x}\]令$y\to 0$,得\[{{f}^{\prime}}\left( x \right){{f}^{\prime}}\left( 0 \right)\geqslant \frac{1+f\left( x \right)}{1+x}\]当$-1 < y < 0$时,\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)+xf\left( y \right)}{y}\leqslant 1+f\left( x \right)\]由$1+x>0$,得\[\frac{f\left[ x+f\left( y \right)+xf\left( y \right) \right]-f\left( x \right)}{x+f\left( y \right)+xf\left( y \right)-x}\cdot \frac{f\left( y \right)}{y}\leqslant \frac{1+f\left( x \right)}{1+x}\]令$y\to 0$,得\[{{f}^{\prime}}\left( x \right){{f}^{\prime}}\left( 0 \right)\leqslant \frac{1+f\left( x \right)}{1+x}\]从而有了\[{{f}^{\prime}}\left( x \right){{f}^{\prime}}\left( 0 \right)=\frac{1+f\left( x \right)}{1+x}\]记${{f}^{\prime}}\left( 0 \right)=a$,上式化为$a\left( 1+x \right){{f}^{\prime}}\left( x \right)=1+f\left( x \right)\]当${{f}^{\prime}}\left( 0 \right)=0$时,$1+f\left( x \right)=0$,所以$f\left( x \right)\equiv -1$,不是单调函数,舍去.

当${{f}^{\prime}}\left( 0 \right)\ne 0$时,上式化为$a\left( 1+x \right){{f}^{\prime}}\left( x \right)-f\left( x \right)=1$,①

于是,\[{{\left[ {{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}f\left( x \right) \right]}^{\prime}}={{\left[ {{\left( 1+x \right)}^{-\frac{1}{a}}}f\left( x \right) \right]}^{\prime}}\]\[={{\left( 1+x \right)}^{-\frac{1}{a}}}{{f}^{\prime}}\left( x \right)-\frac{1}{a}{{\left( 1+x \right)}^{-\frac{1}{a}-1}}f\left( x \right)\]\[=\frac{1}{a}{{\left( \frac{1}{1+x} \right)}^{1+\frac{1}{a}}}\left[ a\left( 1+x \right){{f}^{\prime}}\left( x \right)-f\left( x \right) \right]\]即\[{{\left[ {{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}f\left( x \right) \right]}^{\prime}}=\frac{1}{a}{{\left( \frac{1}{1+x} \right)}^{1+\frac{1}{a}}}\]\[{{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}f\left( x \right)=\int{\frac{1}{a}{{\left( \frac{1}{1+x} \right)}^{1+\frac{1}{a}}}}dx=-{{\left( \frac{1}{1+x} \right)}^{\frac{1}{a}}}+c\]\[f\left( x \right)=c{{\left( 1+x \right)}^{\frac{1}{a}}}-1\]
由$f\left( 0 \right)=0$,得$c=1$,由${{f}^{\prime}}\left( 0 \right)=a$,在①中取$x=0$代入,得${{a}^{2}}=1$,即$a=-1$或$a=1$.

当$a=-1$时,$f\left( x \right)={{\left( 1+x \right)}^{-1}}-1=-\frac{x}{1+x}$;

当$a=1$时,$f\left( x \right)=\left( 1+x \right)-1=x$.

综上,所给函数不等式的解是$f\left( x \right)=-\frac{x}{1+x}$;$f\left( x \right)=x$.

经验证:所求的两个解均为原函数不等式的解.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-5-16 16:19

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2021-5-16 20:02
Last edited by hbghlyj 2025-3-21 21:17建议把方程敲出来,链接有时候会失效的

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2021-6-4 22:11
用chrome的enable-selection扩展程序可以突破页面限制,自由复制页面内容.
hbghlyj 发表于 2021-5-16 16:08
求教:chrome的enable-selection扩展程序在哪找呀

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2021-6-5 01:21
回复 11# 其妙
在chrome商店里找.
chrome.google.com/webstore/category/extensions?hl=en
需要上网才能进入.

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit