Forgot password?
 Register account
View 2516|Reply 11

[不等式] 不用计算器,证明$\log_{1/4}8/7>\log_{1/5}5/4.$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-8-21 09:33 |Read mode
即手工比大小:

$$\log_{\frac 14}\frac 87>\log_{\frac 15}\frac 54.$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-21 16:01
见《撸题集》第 207 页题目 2.3.9.

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-8-21 16:53
回复 2# kuing


    两边加2,化为整数,学习了。
    不过,后段利用导数性质了;

    看看有否纯初等证明。

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted 2017-8-22 10:05
Last edited by hbghlyj 2025-3-19 19:09求证 $\ln _{\frac{1}{4}} \frac{8}{7}>\ln _{\frac{1}{5}} \frac{5}{4}$
证明:
\[
\begin{aligned}
& \text { 上式 } \Leftrightarrow \ln _4 \frac{7}{8}>\ln _5 \frac{4}{5} \Leftrightarrow \ln _4 14>\ln _5 20 \Leftrightarrow \ln _4(192+4)>\ln _5 125+\ln _5 3.2 \\
& \Leftarrow \ln _4 64+\ln _4 3>\ln _5 125+\ln _5 3.2 \Leftrightarrow \ln _4 3>\ln _5 3.2 \Leftrightarrow \ln _4 5>\ln _3 3.2 \\
& \Leftrightarrow \ln _{2048} 3125 \sqrt{5}>\ln _{2187} 3.2^7 \Leftarrow 3125 \sqrt{5}>3.2^7
\end{aligned}
\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-8-22 15:45
Last edited by hbghlyj 2025-5-10 16:29回复 4# wanhuihua
许久才反应快来,用ln 表示的 log !
文字化一下 by wanhuihua:
\begin{align*}3125\sqrt 5>3.2^7\Rightarrow \log_{2048}{3125\sqrt 5}>\log_{2187}{3.2^7}\Rightarrow \log_45>\log_3{3.2}\Rightarrow \log_43>\log_5{3.2}\\ \ \\
3+\log_43>3+\log_5{3.2}\Rightarrow \log_4{196}>\log_4{192}>\log_5{200}\Rightarrow \log_4{14}>\log_5{20},\cdots\end{align*}

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-22 15:53
回复 5# isee

俺也是第一次看到这样写对数的

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted 2017-8-22 15:54
回复 4# wanhuihua

ln 表示log 哈哈写错了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-8-22 16:38
回复 4# wanhuihua


    这个证明很初等,厉害,佩服!实质就是尽量把底,真数尽量化小,(>1),然后扩大拉开差距。

   很精彩。不过,加2变整数,是不是也是受k的影响?这与化小有点矛盾。

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-8-22 18:11
不用计算器,可以用计算机呀

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-8-26 16:05
回复 5# isee


给出单墫老师给出一种证法(写法不完全相同):


\begin{align*}
\log_{\frac 14}\frac 87>\log_{\frac 15}\frac 54&\iff \log_4\frac 87<\log_5\frac 54 \\
&\iff \log_4\frac 87<\frac{\log_4\frac 54}{\log_45}=\log_54\log_4\frac 54
\end{align*}
注意$$5^4<4^5\Rightarrow \frac 45<\log_54.$$则需证$$\log_4\frac 87<\frac 45\log_4\frac 54\iff \left(\frac 87\right)^5<\left(\frac 54\right)^4\iff 32^4\cdot8<35^4\cdot7.$$

做乘法计算,知上式成立。证毕。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-9-6 08:45
回复 10# isee
《解题漫谈》么?《学数学》上有导数解法。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-6 10:35
回复 11# 力工


    对,解题漫谈。

    如果有分析证明,不妨发来学习学习。

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit