Forgot password
 Register account
View 3134|Reply 12

[几何] 三角形中$a+b\geqslant 2c$,证$C\leqslant \pi/3$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-8-21 09:45 |Read mode
$\triangle ABC$中,$a+b\geqslant 2c$,求证:$\angle C\leqslant \frac {\mathrm\pi}3.$

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-8-21 11:51
这是基础题呀

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-8-21 12:50
回复 2# 色k


    有难有易,易突出难,难突出易。

    也不易,北约自招题。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-8-21 14:44
回复 3# isee

这个不易?

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-8-21 15:29
Last edited by isee 2017-8-26 16:06回复 4# kuing


    你功力深,,,,我揣测下,,,你是这样的——

$$c^2=a^2+b^2-2ab\cos C\geqslant 4c^2-2ab(1+\cos C),ab\leqslant \left(\frac {a+b}2\right)^2,\cdots$$


再不然就是这样——

$$\sin A+\sin B\geqslant 2\sin C\Rightarrow 2\sin \frac{A+B}2\cos \frac {A-B}2\geqslant 4\sin \frac{A+B}2\cos \frac {A+B}2\Rightarrow \cos \frac {A-B}2\geqslant 2\cos \frac {A+B}2,\cdots$$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-8-21 15:55
随便,反正这题怎么看都是基础题

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-8-21 21:36
回复  kuing


    你功力深,,,,我揣测下,,,你是这样的——

$$c^2=a^2+b^2-2ab\cos C\geqslant 4c ...
isee 发表于 2017-8-21 15:29
不等式的系数搞错了吧,基础题

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-8-21 23:00
回复 7# 其妙

我就是估了下,也没检查,你写来瞧瞧。。。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-8-21 23:31
好吧,我来解决它(虽然就是一个基本不等式的问题,当然,消元是不动脑筋的一个选择哟),
许久没用代码了,打起字来挺麻烦的,幸好还有贴心的草稿本。。。

$\cos C=\dfrac{a^2+b^2-c^2}{2ab}\geqslant\dfrac{a^2+b^2-(\dfrac{a+b}{2})^2}{2ab}=\dfrac{\dfrac34(a^2+b^2)-\dfrac12ab}{2ab}\geqslant\dfrac{\dfrac32ab-\dfrac12ab}{2ab}=\dfrac12$,

于是,$C\leqslant\dfrac{\pi}3$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-8-22 16:11
回复 1# isee

\pi 前加 \mathrm 是没用的,无论是在这里还是在 latex 里。
要让 \pi 直立只能是使用具有直立体 \pi 的字体,具体就不在这里说了。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-8-26 16:08
回复 10# kuing


    原来如此,texlive里只简单用的 upgreek 宏包

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-8-27 08:25
文首题目还可以改为:$a,b,c$成等差数列或称等比数列,其余不变

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-8-27 14:23
回复 12# 其妙

看来你是写文章写多了,开口就“文首”,这里是论坛,是不是应该换个词,比如说“帖首”?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:55 GMT+8

Powered by Discuz!

Processed in 0.014385 seconds, 23 queries