Forgot password?
 Register account
View 1440|Reply 7

$abc=1$

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-8-22 21:00 |Read mode
若$a,b,c>0,abc=1$,证明:\[a^3+b^3+c^3+22\ge \frac{25}{3}(a+b+c)\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-23 02:14
用软件算出 $a^3+b^3+c^3+k\ge \dfrac{3+k}{3}(a+b+c)$ 成立的最大 $k$ 值为方程
16740027-15379713*k+17483364*k^2-600237*k^3+1622808*k^4-79632*k^5+256*k^6=0
的一个根,其近似值为 22.032,命题者取了 22,与最佳系数只差那么一点点,要用一般的手工证法估计很难证,俺还是先闪了……

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-23 08:39
回复 2# kuing
据说是某大师加紧的
这么看来取$k=3or9$之类的应该有优美解?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-23 15:13
回复 3# v6mm131

可以取 k=17.25 ,有很简单的优美解

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-24 02:48
Last edited by v6mm131 2017-8-24 03:14这个最佳的k值是不是用调整法得到的?
令 $f(a,b,c)=a^3+b^3+c^3+k-\dfrac{3+k}{3}(a+b+c)$, $a=\min\{a,b,c\}$
则$a\le 1$,$f(a,b,c)-f(a,\sqrt{bc},\sqrt{bc})=(\sqrt{b}-\sqrt{c})^2(b^2+c^2+3bc+2(b+c)\sqrt{bc}-\dfrac{k+3}{3})$$\ge (\sqrt{b}-\sqrt{c})^2(\dfrac{9}{a}-\dfrac{k+3}{3})\ge 0$
则可得到:$k\le 24$
故只需要$f(\dfrac{1}{b^2},b,b)\ge0$即可
经过一番化简得到:\[k\le\dfrac{6b^9-6b^7-3b^4+3}{2b^7-3b^6+b^4}\]
打开软件,机器告诉我们最佳k的近似值为22.032

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-8-25 12:31
Last edited by hbghlyj 2025-4-10 00:58再上三道题(条件$abc=1$):
1.Let $a, b, c$ be positive real numbers such that,$a b c=1$
Prove that\[
\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1} \leq 1
\]
2.$a, b, c>0, a+b+c \geq 3$ ,prove :$\sum \frac{1}{a^2+b+c} \leq 1$
3.已知 $a, b,  c \inR_{+}$,且 $a b c=1$ .证明:$\frac{1}{a^2+b+1}+\frac{1}{b^2+c+1}+\frac{1}{c^2+a+1} \leqslant 1$ .

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-25 20:06
回复 6# 其妙
kk的有简单解 我撸不动

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-8-27 08:30
回复 7# v6mm131
这里有《三个正数乘积为1的一种代换方法及其应用》(点击即可出现文章)
里面有一种代换法,或许有用。k神不撸这些没劲的题?
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit