Forgot password?
 Register account
View 2648|Reply 18

[不等式] 一个二元最值问题

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-8-30 23:01 |Read mode
已知$\dfrac{1}{4}< m < \dfrac{1}{3},\dfrac{1}{4}< n < \dfrac{1}{3}$,且$\dfrac{1}{m}+\dfrac{1}{n}=7$,
求$\sqrt{m^2+m}+\sqrt{n^2+n}$的最小值

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-30 23:06
$\sqrt{1/x^2+1/x}$ 下凸。

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-30 23:18
回复 2# 色k

原题是这样的
当$x>1$时,求$f(x)=\dfrac{\sqrt{5x^2-x}}{4x-1}+\dfrac{\sqrt{4x^2+x}}{3x+1}$的最小值

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-30 23:24
回复 3# v6mm131

那你是怎么变过去的?

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-30 23:30
Last edited by v6mm131 2017-8-30 23:37回复 4# 色k
\[\dfrac{\sqrt{5x^2-x}}{4x-1}=\sqrt{\dfrac{x}{4x-1}+\dfrac{x^2}{(4x-1)^2}}\]

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-30 23:33
回复 5# v6mm131

不用编辑了,俺已经知道鸟,所以就OK咯

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-30 23:35
回复 6# 色k
这都被你看出来了 好像有点卡啊

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-30 23:41
由于转化出来的是下凸,意味着各种方法都可以随便撸,比如说切线法啊,配方+三角形不等式+均值啊等等

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-31 15:56
回复 8# 色k

配方三角形+均值的怎么配的?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-31 16:17
Last edited by 色k 2017-8-31 17:02回复 9# v6mm131
\(\require{cancel}\)
$\sqrt{m^2+m}+\sqrt{n^2+n}=\xcancel{\sqrt{(m+1/2)^2+...}+\sqrt{...}
\ge\sqrt{(m+n+1)^2+...}\ge...}$

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-31 16:47
回复 10# 色k

还是不要这样搞,毕竟后面是负的。
那就不配方了,直接三角形搞过去吧
$\sqrt{m^2+m}+\sqrt{n^2+n}\ge\sqrt{(m+n)^2+(\sqrt m+\sqrt n)^2}\ge\sqrt{4mn+4\sqrt{mn}}$,注意 $7=1/m+1/n\ge2/\sqrt{mn}$ 得 $\sqrt{mn}\ge2/7$

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-31 16:52
回复 11# 色k
当时就是发现那里是负的 就挂了 还是10楼的写法好点

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-31 16:59
回复 12# v6mm131

稍微不认真就失误了不过没所谓,反正可行的方法多的是

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-31 17:24
回复 8# 色k
做一次小蜜蜂 整理一发
$type

一道函数最值问题.pdf

125.57 KB, Downloads: 6621

整理

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-31 17:29
回复 14# v6mm131

848,这都值得整理……
咦?你不是会撸代码吗?怎么不用 tex 写

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-31 17:36
如果给学生看的话,纯二元均值就有必要写啦
$\sqrt{m^2+m}+\sqrt{n^2+n}\ge2\sqrt[4]{(m^2+m)(n^2+n)}
=2\sqrt[4]{m^2n^2+mn(m+n)+mn}
\ge2\sqrt[4]{m^2n^2+2mn\sqrt{mn}+mn}
=2\sqrt{mn+\sqrt{mn}}$
反而切线法那个可以扔掉,毕竟琴生可行则切线必可行这是地球人都知道的,只有在琴生不可行的时候才有必要尝试切线

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

 Author| v6mm131 Posted 2017-8-31 17:38
回复 15# 色k

打草稿 还是mathtype有优点啊  tex 还是用的不顺手

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-8-31 17:46
回复 17# v6mm131

需要用 tex 撸东西时记得找我嗯

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-8-31 18:31
很好!

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit