|
kuing
Posted 2017-9-15 19:04
可能走了弯路:
\begin{align*}
\tan6\du\tan42\du\tan66\du\tan78\du
&=\tan6\du\cot12\du\cot24\du\cot48\du \\
&=\frac{\sin6\du\cos12\du\cos24\du\cos48\du}
{\cos6\du\sin12\du\sin24\du\sin48\du},
\end{align*}
利用连锁反应易知
\[\sin6\du\cos12\du\cos24\du\cos48\du=\frac1{16},\]
又由积化和差及已知的数值有
\begin{align*}
\cos6\du\sin24\du&=\frac12(\sin18\du+\sin30\du)
=\frac12\left( \frac{\sqrt5-1}4+\frac12 \right)
=\frac{\sqrt5+1}8, \\
\sin12\du\sin48\du&=\frac12(\cos36\du-\cos60\du)
=\frac12\left( \frac{\sqrt5+1}4-\frac12 \right)
=\frac{\sqrt5-1}8,
\end{align*}
相乘得
\[\cos6\du\sin12\du\sin24\du\sin48\du=\frac1{16},\]
从而原式等于 $1$。 |
|