Forgot password?
 Register account
View 2744|Reply 8

[函数] 求$\tan 6^\circ\tan 42^\circ\tan 66^\circ\tan 78^\circ$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-9-15 16:18 |Read mode
求$$\tan 6^\circ\tan 42^\circ\tan 66^\circ\tan 78^\circ.$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-15 19:04
可能走了弯路:
\begin{align*}
\tan6\du\tan42\du\tan66\du\tan78\du
&=\tan6\du\cot12\du\cot24\du\cot48\du \\
&=\frac{\sin6\du\cos12\du\cos24\du\cos48\du}
{\cos6\du\sin12\du\sin24\du\sin48\du},
\end{align*}
利用连锁反应易知
\[\sin6\du\cos12\du\cos24\du\cos48\du=\frac1{16},\]
又由积化和差及已知的数值有
\begin{align*}
\cos6\du\sin24\du&=\frac12(\sin18\du+\sin30\du)
=\frac12\left( \frac{\sqrt5-1}4+\frac12 \right)
=\frac{\sqrt5+1}8, \\
\sin12\du\sin48\du&=\frac12(\cos36\du-\cos60\du)
=\frac12\left( \frac{\sqrt5+1}4-\frac12 \right)
=\frac{\sqrt5-1}8,
\end{align*}
相乘得
\[\cos6\du\sin12\du\sin24\du\sin48\du=\frac1{16},\]
从而原式等于 $1$。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-15 19:22
回复 2# kuing

啧啧,结果是1。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-15 23:13
Last edited by hejoseph 2017-9-15 23:24根据下面的公式
\begin{align*}
&\prod_{i=1}^n\sin\frac{i\pi}{2n+1}=\frac{\sqrt{2n+1}}{2^n},\\
&\prod_{i=1}^{n-1}\sin\frac{i\pi}{2n}=\frac{\sqrt{n}}{2^{n-1}},\\
&\prod_{i=1}^n\cos\frac{i\pi}{2n+1}=\frac{1}{2^n},\\
&\prod_{i=1}^{n-1}\cos\frac{i\pi}{2n}=\frac{\sqrt{n}}{2^{n-1}},\\
&\prod_{i=1}^n\tan\frac{i\pi}{2n+1}=\sqrt{2n+1},\\
&\prod_{i=1}^{n-1}\tan\frac{i\pi}{2n}=1,
\end{align*}
上面倒数第二个方程中分别取 $n=7$,$n=2$,$n=1$,得
\begin{align*}
&\tan12^\circ\tan24^\circ\tan36^\circ\tan48^\circ\tan60^\circ\tan72^\circ\tan84^\circ=\sqrt{15},\\
&\tan36^\circ\tan72^\circ=\sqrt{5},\\
&\tan60^\circ=\sqrt{3},
\end{align*}
所以
\[
\tan12^\circ\tan24^\circ\tan48^\circ\tan84^\circ=1,
\]

\[
\tan6^\circ\tan42^\circ\tan66^\circ\tan78^\circ=1。
\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-15 23:21
回复 4# hejoseph


    擦,隐藏了这么多背景!学习中。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-15 23:28
回复 4# hejoseph

这招放得好

回复 5# isee

楼上你说的“学习中”是要自己推导那几个公式吗?那我就先不贴链接了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-15 23:41
回复 6# kuing

帖吧,先,我不会先看的。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-15 23:44
回复 7# isee

《撸题集》第1041页第二个链接

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2017-9-19 19:45
2楼,4楼都很赞。

如果知识用少点,
600题征解,给出的答案为,用三倍角公式$$\tan 3\theta=\tan \theta \tan (60^\circ-\theta)\tan (60^\circ+\theta)$$可得

$$\tan 18^\circ=\tan 6^\circ\tan 54^\circ\tan 66^\circ\\\tan 54^\circ=\tan 18^\circ\tan 42^\circ\tan 78^\circ\\$$两式相乘即可.

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit