Forgot password?
 Register account
View 2206|Reply 3

[不等式] 三边 $28\sum a^3c\ge(\sum a)^4+\sum a^4$

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-15 20:57 |Read mode
Joseph 15:01:01
别人发的一个题目,你看有没有兴趣
a、b、c为三角形三边,求证:
28 (a^3 c + b^3 a + c^3 b) >=(a + b + c)^4 + a^4 + b^4 + c^4
没什么兴趣做,用增量法可以证明出来
kuing 15:08:47
我做估计也是暴力,暂时没什么心思研究

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-11-17 15:33
回复 2# zdyzhj
惊现“一行大师”,请问是县长么?我等学生只知一行,不难证明等法。

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

xzlbq Posted 2017-12-12 13:29
回复 1# kuing


    令$a=y+z,b=z+x,c=x+y$,则原不等式可配方为
$ \left( z-x \right) ^{2} \left( 10\,{x}^{2}+18\,xy+2\,xz \right) +6\,
\left( 2\,y-z-x \right) ^{2}yz+6\, \left( 2\,z-x-y \right) ^{2}xz+6\,
\left( 2\,x-y-z \right) ^{2}xy+ \left( y-z \right) ^{2} \left( 10\,{z
}^{2}+18\,xz+2\,yz \right) + \left( x-y \right) ^{2} \left( 10\,{y}^{2
}+18\,yz+2\,xy \right) \geq 0
$

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2017-12-18 22:47
回复 3# 力工

你也知道县长啊

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit