Forgot password
 Register account
View 2000|Reply 11

[不等式] 证$\sqrt{xyz}\leqslant \frac {x+y+z}3$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-9-20 17:29 |Read mode
设$x,y,z$都是正数,满足关系$$\frac 1x+\frac 1y+\frac 1z\geqslant \frac {27}{8}.$$证明:$$\sqrt{xyz}\leqslant \frac {x+y+z}3.$$

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-9-20 23:24
总感觉你抄错题,因为按现在的条件很容易证出更强式
\[\sqrt{\frac98xyz}\le\frac{x+y+z}3.\]

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-9-20 23:28
回复 2# 色k


    我相信我抄的对,我也相信你加强也是对,我只是觉得这个不等式有点好看罢了,哈哈。

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-9-20 23:38
回复 3# isee

这个不会又是那个600著名题里面的吧?

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-9-21 01:45
回复 4# 色k


   最近全是,我会把我觉得我看得懂的挑上来大家看看。

   一般都会被你们解决掉。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-9-21 02:14
回复 5# isee

……
所以我搞不懂选题标准,这题实在是差……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-9-23 18:54
总感觉你抄错题,因为按现在的条件很容易证出更强式
\[\sqrt{\frac98xyz}\le\frac{x+y+z}3.\] ...
色k 发表于 2017-9-20 23:24
我知道isee为什么会选这道题了,假如是你的加强的题,isee是不会选的,

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-10-10 16:09
虽2#有加强,不过,主楼命题现无其二证法,应该还算是不好证明的不等式。

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-10-10 16:29
对主楼命题:

已知条件化简整理即为$$\frac {27}8xyz\leqslant xy+yz+zx.$$
于是
\begin{align*}
\sqrt{xyz}\leqslant \frac {x+y+x}3\iff 9xyz\leqslant (x+y+z)^2.
\end{align*}
从而
\begin{align*}
9xyz=\frac 83\cdot\frac{27}8xyz\leqslant\frac 83(xy+yz+zx).
\end{align*}

需证$$\frac 83(xy+yz+zx)\leqslant (x+y+z)^2\iff \frac 23(xy+yz+zx)\leqslant x^2+y^2+z^2.$$

此至,对正数而言,这是显然的了.

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-10-10 16:32
回复 2# 色k


    主楼的真的很弱哦,我都会证,哈哈。。。。。

13

Threads

898

Posts

8

Reputation

Show all posts

色k posted 2017-10-10 16:41
回复 10# isee

你证完也应该会发现可以加强了吧?

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-10-10 16:48
回复 11# 色k


    确实!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:15 GMT+8

Powered by Discuz!

Processed in 0.013260 seconds, 22 queries