|
kuing
posted 2017-9-22 13:38
分参即求下式的最大值
\[\frac{(x^2+y^2+z^2)xyz}{xy+yz+zx}.\]
由对称性不妨设 $x\leqslant y\leqslant z$,则 $z\geqslant 1$,令 $t=xy$,则
\[t\leqslant \frac14(x+y)^2=\frac14(3-z)^2,\]
且
\begin{align*}
\frac{(x^2+y^2+z^2)xyz}{xy+yz+zx}
&=\frac{\bigl(9-2xy-2(x+y)z\bigr)xyz}{xy+(x+y)z} \\
&=\frac{\bigl(9-2t-2(3-z)z\bigr)tz}{t+(3-z)z} \\
&=\left( 9-2t-\frac{9z(3-z)}{t+(3-z)z} \right)z,
\end{align*}
令
\[f(t)=9-2t-\frac{9(3-z)z}{t+(3-z)z},\]
则
\[
f'(t)=-2+\frac{9(3-z)z}{\bigl(t+(3-z)z\bigr)^2}
\geqslant -2+\frac{9(3-z)z}{\left( \frac14(3-z)^2+(3-z)z \right)^2}
=\frac{2(z-1)(z^2+3)}{(3-z)(z+1)^2}
\geqslant 0,
\]
故
\[f(t)\leqslant f\left( \frac14(3-z)^2 \right),\]
所以
\[\frac{(x^2+y^2+z^2)xyz}{xy+yz+zx}
\leqslant f\left( \frac14(3-z)^2 \right)\cdot z
=\frac{z(3-z)(z^2-2z+3)}{2(z+1)}=g(z),\]
求导得
\[g'(z)=\frac{3(z-1)^2(3-z^2)}{2(z+1)^2},\]
可见
\[g(z)_{\max}=g\bigl(\sqrt3\bigr)=27-15\sqrt3,\]
所以 $k$ 的取值范围为 $\bigl[27-15\sqrt3,+\infty\bigr)$。 |
|