Forgot password
 Register account
View 1964|Reply 5

[不等式] 一道含参的恒成立不等式问题

[Copy link]

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2017-9-22 11:08 |Read mode
正数$x,y,z$满足$x+y+z=3$,求使$x^2+y^2+z^2\leqslant k\cdot( \frac{1}{x}+\frac{1}{y}+\frac{1}{z})$恒成立的实数$k$的范围.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-9-22 13:38
分参即求下式的最大值
\[\frac{(x^2+y^2+z^2)xyz}{xy+yz+zx}.\]

由对称性不妨设 $x\leqslant y\leqslant z$,则 $z\geqslant 1$,令 $t=xy$,则
\[t\leqslant \frac14(x+y)^2=\frac14(3-z)^2,\]

\begin{align*}
\frac{(x^2+y^2+z^2)xyz}{xy+yz+zx}
&=\frac{\bigl(9-2xy-2(x+y)z\bigr)xyz}{xy+(x+y)z} \\
&=\frac{\bigl(9-2t-2(3-z)z\bigr)tz}{t+(3-z)z} \\
&=\left( 9-2t-\frac{9z(3-z)}{t+(3-z)z} \right)z,
\end{align*}

\[f(t)=9-2t-\frac{9(3-z)z}{t+(3-z)z},\]

\[
f'(t)=-2+\frac{9(3-z)z}{\bigl(t+(3-z)z\bigr)^2}
\geqslant -2+\frac{9(3-z)z}{\left( \frac14(3-z)^2+(3-z)z \right)^2}
=\frac{2(z-1)(z^2+3)}{(3-z)(z+1)^2}
\geqslant 0,
\]

\[f(t)\leqslant f\left( \frac14(3-z)^2 \right),\]
所以
\[\frac{(x^2+y^2+z^2)xyz}{xy+yz+zx}
\leqslant f\left( \frac14(3-z)^2 \right)\cdot z
=\frac{z(3-z)(z^2-2z+3)}{2(z+1)}=g(z),\]
求导得
\[g'(z)=\frac{3(z-1)^2(3-z^2)}{2(z+1)^2},\]
可见
\[g(z)_{\max}=g\bigl(\sqrt3\bigr)=27-15\sqrt3,\]
所以 $k$ 的取值范围为 $\bigl[27-15\sqrt3,+\infty\bigr)$。

281

Threads

550

Posts

2

Reputation

Show all posts

original poster 力工 posted 2017-9-22 13:58
orz,感谢强大的酷神,万能!厉害了word哥!回复 2# kuing

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-9-22 14:09
kuing 相当于把数学空间第4期,题目2.2.5,又做了一次推广。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-9-22 14:22
回复 4# isee

[NO]这并不是同一类型的题,不能算推广。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-9-22 14:33
回复 5# kuing


    哈哈,外行看起来样子差不多咯。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:12 GMT+8

Powered by Discuz!

Processed in 0.021507 seconds, 22 queries