Forgot password?
 Register account
View 2034|Reply 9

[函数] 两道解方程的题

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2017-9-25 10:14 |Read mode
Last edited by hbghlyj 2025-4-6 03:39解方程 $\frac{\sqrt{4+\sqrt{x}}}{4}+\frac{\sqrt{4+\sqrt{x}}}{\sqrt{x}}=\sqrt[4]{\frac{x}{4}}$ .
解方程 $\sqrt{\frac{3-x}{1+x}}=\frac{3-x^2}{1+x^2}$ .

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-9-25 11:52
Last edited by 游客 2017-9-25 15:061、实数范围,X=16。
2、五次方程:(x-1)(x^2-2x-1)(x^2+2x+3)=0。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-25 12:13
第二题与《撸题集》第 788 页题目 5.6.28 类似

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-25 12:27
Last edited by hejoseph 2017-9-25 12:38第一题整理下很容易的变成
\[
\sqrt{\left(4+\sqrt x\right)^3}=\sqrt[4]{(4x)^3},
\]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2017-9-26 14:39
回复 2# 游客


    2.分解出(x-1)后,后面那个四次多项式是怎么分解的?待定系数硬来?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-26 15:37
回复 5# guanmo1

三楼的回复可不是随便回的……
第二题与《撸题集》第 788 页题目 5.6.28 类似
类似的地方在于等号两边都互为反函数,所以可以考虑它们 $=x$ 时如何,然后作差分解就会发现
\begin{align*}
\frac{3-x}{1+x}-x^2&=\frac{(1-x)(3+2x+x^2)}{1+x}, \\
\frac{3-x^2}{1+x^2}-x&=\frac{(1-x)(3+2x+x^2)}{1+x^2},
\end{align*}
从而必有因式 $(1-x)(3+2x+x^2)$。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-26 15:57
可以直接用一般一元四次方程的解法的,第一步就是那个因式分解的过程

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2017-9-26 22:45
回复 6# kuing


    怒赞!

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-9-27 09:14
$type 三次方程解法普及.doc (83.5 KB, Downloads: 5907)

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-9-27 09:28
方程2左右两边互为反函数,交点在直线$y=x$上或关于$y=x$对称可解。

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit