Forgot password?
 Register account
View 2357|Reply 15

[函数] 正切求和

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2017-9-28 14:19 |Read mode
求教一题,求$9\tan10^{0}+2\tan20^{0}+4\tan40^{0}-\tan80^{0} $的值。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-9-28 14:45
回复 1# longzaifei


    提示$$\tan \alpha-\cot\alpha=-2\cot 2\alpha.$$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-9-28 14:48
反复利用上式化简原式$$\tan 10^\circ-\cot 10^\circ+2\tan 20^\circ+4\tan 40^\circ+8\tan 80^\circ=0.$$

PS:很久未见到这种风格的化简了。
PPS:度不是0,^\circ是度,论坛有简化自定义代码

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-28 14:51
回复 3# isee

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-9-28 14:52
回复 4# kuing


    踢飞~

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted 2017-9-28 15:07
回复 2# isee

学习,谢谢!!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-9-28 15:33
回复 2# isee
很长时间没有用这个式子了。其实不一定要用它,刚才算了下,懒不得啊。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-28 16:59
谁能证明下
\[
\tan 10^\circ+\tan 20^\circ+\tan 40^\circ=\frac{3+7\tan^2 80^\circ}{\tan^3 80^\circ-3\tan 80^\circ}
\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-9-28 17:11
回复 8# hejoseph

这个用倍角公式全部化成 tan10 可以暴力证出来,巧妙证法还没想……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-9-28 18:07
回复 9# kuing

何版出的题一般都需要一定的计算量。。。。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-28 22:03
回复 9# kuing

我的方法:
首先容易证明
\[
8\cos 10^\circ\cos 20^\circ\cos 40^\circ=\tan 80^\circ,
\]
于是就要证明
\[
8\left(\cos 20^\circ\cos 40^\circ\sin 10^\circ+\cos 10^\circ\cos 40^\circ\sin 20^\circ+\cos 10^\circ\cos 20^\circ\sin 40^\circ\right)=\frac{3+7\tan^2 80^\circ}{\tan^2 80^\circ-3}。
\]
另外,容易证明
\[
4\cos x\cos y\sin z=\sin(x+y+z)+\sin(-x+y+z)+\sin(x-y+z)-\sin(x+y-z),
\]
应用上面的公式,并整理得
\begin{align*}
&8\left(\cos 20^\circ\cos 40^\circ\sin 10^\circ+\cos 10^\circ\cos 40^\circ\sin 20^\circ+\cos 10^\circ\cos 20^\circ\sin 40^\circ\right)\\
={}&1+6\cos 20^\circ+2\cos 40^\circ-2\cos 80^\circ,
\end{align*}

\begin{align*}
\frac{3+7\tan^2 80^\circ}{\tan^2 80^\circ-3}&=\frac{3\tan^2 10^\circ+7}{1-3\tan^2 10^\circ}\\
&=\frac{3\left(1-\cos 20^\circ\right)/\left(1+\cos 20^\circ\right)+7}{1-3\left(1-\cos 20^\circ\right)/\left(1+\cos 20^\circ\right)}\\
&=\frac{2\cos 20^\circ+5}{2\cos 20^\circ-1},
\end{align*}
于是就是要证明
\[
\left(1+6\cos 20^\circ+2\cos 40^\circ-2\cos 80^\circ\right)\left(2\cos 20^\circ-1\right)=2\cos 20^\circ+5,
\]

\begin{align*}
&\left(1+6\cos 20^\circ+2\cos 40^\circ-2\cos 80^\circ\right)\left(2\cos 20^\circ-1\right)\\
={}&{-}1-4\cos 20^\circ+12\cos^2 20^\circ+4\cos 20^\circ\cos 40^\circ-4\cos 20^\circ\cos 80^\circ-2\cos 40^\circ+2\cos 80^\circ\\
={}&{-}1-4\cos 20^\circ+6\left(1+\cos 40^\circ\right)+2\left(\cos 60^\circ+\cos 20^\circ\right)-2\left(\cos 100^\circ+\cos 60^\circ\right)-2\cos 40^\circ+2\cos 80^\circ\\
={}&5-2\cos 20^\circ+4\cos 40^\circ+4\cos 80^\circ\\
={}&5-2\cos 20^\circ+8\cos 60^\circ\cos 20^\circ\\
={}&5+2\cos 20^\circ,
\end{align*}
等式成立。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-9-28 22:19
回复 11# hejoseph
这我真的没有看明白,建议申请一个啥奖项可以的。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-9-28 22:54
回复 11# hejoseph

用的技巧真多……

我还是把全化 tan10 的写写吧……
求证
\[\tan 10^\circ+\tan 20^\circ+\tan 40^\circ=\frac{3+7\tan^2 80^\circ}{\tan^3 80^\circ-3\tan 80^\circ}.\]
令 $t=\tan10\du$,则由倍角公式可知待证式等价于
\[
t+\frac{2t}{1-t^2}+\frac{4t-4t^3}{1-6t^2+t^4}=\frac{3+7t^{-2}}{t^{-3}-3t^{-1}},
\]
去分母化简,等价于证
\[3 t^6-27 t^4+33 t^2-1=0,\quad(*)\]
再由倍角公式有
\[\frac{3t-t^3}{1-3t^2}=\tan30\du=\frac1{\sqrt3},\]
两边平方整理后同样为式 (*),所以得证。

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-9-28 23:07
回复 13# 色k

用的东西并不多,全都是倍角公式、和差化积、积化和差,
\[
4\cos x\cos y\sin z=\sin(x+y+z)+\sin(-x+y+z)+\sin(x-y+z)-\sin(x+y-z),
\]
这个就是两步积化和差的结论。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-9-29 00:05
回复 14# hejoseph

这公式我知道(类似于《数学空间》第2期P10例2.2.4),用的东西我也清楚,只是不容易想到这样用,技巧指的就是这……

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-9-29 08:24
Last edited by hbghlyj 2025-5-10 17:17\begin{aligned}
& \frac{3+7 \tan ^2 80^{\circ}}{\tan ^2 80^{\circ}-3}=\frac{3 \cos ^2 80^{\circ}+7 \sin ^2 80^{\circ}}{\sin ^2 80^{\circ}-3 \cos ^2 80^{\circ}} \\
& =\frac{7-4 \cos ^2 80^{\circ}}{1-4 \cos ^2 80^{\circ}}=1+\frac{6}{1-4 \cos ^2 80^{\circ}} . \end{aligned}
\begin{aligned}& \tan 80^{\circ}\left(\tan 10^{\circ}+\tan 20^{\circ}+\tan 40^{\circ}\right)\\&=1+\tan 80^{\circ}\left(\tan 20^{\circ}+\tan 40^{\circ}\right) \\
& =1+\frac{\sin 80^{\circ}}{\cos 80^{\circ}} \cdot \frac{\sin 20^{\circ} \cos 40^{\circ}+\cos 20^{\circ} \sin 40^{\circ}}{\cos 20^{\circ} \cos 40^{\circ}} \\
& =1+\frac{\sin 80^{\circ} \sin 60^{\circ}}{\cos 80^{\circ} \cos 20^{\circ} \cos 40^{\circ}} \cdot \frac{8 \sin 20^{\circ}}{8 \sin 20^{\circ}} \\
& =1+8 \sin 80^{\circ} \sin 60^{\circ}=1+4 \sqrt{3} \cos 10^{\circ} .
\end{aligned}
只要证明:$\frac{6}{1-4 \cos ^2 80^{\circ}}=4 \sqrt{3} \cos 10^{\circ}$ ,
即要证明: $\cos 10^{\circ}\left(1-4 \cos ^2 80^{\circ}\right)=\frac{\sqrt{3}}{2}=\cos 30^{\circ}$.
\begin{aligned}
& \cos 10^{\circ}\left(1-4 \cos ^2 80^{\circ}\right)-\cos \left(20^{\circ}+10^{\circ}\right) \\
& =\cos 10^{\circ}\left(2 \cos 20^{\circ}-1\right)-\cos 20^{\circ} \cos 10^{\circ}+\sin 20^{\circ} \sin 10^{\circ} \\
& =\cos 20^{\circ} \cos 10^{\circ}+\sin 20^{\circ} \sin 10^{\circ}-\cos 10^{\circ}=0 .
\end{aligned}
就是有点繁,计算比较多。

Mobile version|Discuz Math Forum

2025-5-31 10:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit