Forgot password?
 Register account
View 2321|Reply 8

[函数] 关于$n$次单位根的一个恒等式

[Copy link]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-10-3 22:26 |Read mode
6blog图片.jpg
妙不可言,不明其妙,不着一字,各释其妙!

0

Threads

1

Posts

5

Credits

Credits
5

Show all posts

川木寻叶 Posted 2017-10-6 17:39
Last edited by 川木寻叶 2017-10-6 18:01左右两边同时乘以右边的分母,则左右两边均为n次多项式(注意x^n-1=prod_i(x-Z_i))。

因为它们首项系数相等,故只需验证n个值即可。将1的n个根代入,右边很清楚总是2n;至于左边,比如可用L'Hopital法则求出亦是2n。

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-10-6 19:18
回复 2# 川木寻叶

图片根本看不清。还是根本没准备让别人看清?
特么地原来显示有问题。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2017-10-6 20:12
回复 2# 川木寻叶
思路好像有道理

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2017-10-7 09:40
回复 2# 川木寻叶

$n$ 次多项式等于 0 有 $n$ 个不同的根不足以证明其为恒等于 0,需要 $n+1$ 个不同的根才可以,这里再取 $x=0$ 是很容易证明也是根的。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2017-10-7 10:47
回复 5# hejoseph

他已经说了首项系数相等所以n个足矣

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2017-10-7 18:02
$\displaystyle\frac{1}{(x-z_k)(x-1/z_k)}=\frac{1}{x^2-1}(\frac{x}{x-z_k}-\frac{1/x}{1/x-z_k})$

$\displaystyle f(x)=\prod_{k=0}^{n-1} (x-z_k)=x^n-1$

$\displaystyle\sum_{k=0}^{n-1}\frac{1}{x-z_k}=\frac{f'(x)}{f(x)}=\frac{nx^{n-1}}{x^n-1}$

$\displaystyle\sum_{k=0}^{n-1}\frac{1}{(x-z_k)(x-1/z_k)}=\frac{1}{x^2-1}(x\frac{nx^{n-1}}{x^n-1}-\frac{1}{x}\frac{nx^{1-n}}{x^{-n}-1})=\frac{n(x^n+1)}{(x^n-1)(x^2-1)}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-17 22:00
回复 7# tommywong

这解法不错

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2017-12-21 23:12
回复 7# tommywong
这解法不错

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit