Forgot password?
 Register account
View 1813|Reply 8

[不等式] 除了判别式还有什么方法?谢谢

[Copy link]

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

aaa Posted 2017-10-5 21:35 |Read mode
已知正实数 $x,y$ 满足 $x+\dfrac{1}{x}+2y+\dfrac{4}{y}=6\sqrt{2}$,则 $xy$ 的取值范围

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-10-5 22:20
与《撸题集》第12页题目 1.1.14 类似

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

 Author| aaa Posted 2017-10-6 09:47
回复 2# kuing

谢谢

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-10-6 20:45
回复 3# aaa
这里也有(文末):blog.sina.com.cn/s/blog_54df069f0102vids.html

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

 Author| aaa Posted 2017-10-6 22:14
回复 4# 其妙


    非常感谢

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-10-7 09:30
Last edited by hbghlyj 2025-4-17 19:31\begin{aligned} & x+\frac{1}{x}+2 y+\frac{4}{y}=6 \sqrt{2} \Rightarrow 1-\frac{1}{x^2}+2 y^{\prime}-\frac{4 y^{\prime}}{y^2}=0 . \\ & \text { 令 }(x y)^{\prime}=y+y^{\prime} x=0 \text {, 则: } 1-\frac{1}{x^2}-\frac{2 y}{x}+\frac{4}{x y}=0 . \\ & \Rightarrow x-\frac{1}{x}-2 y+\frac{4}{y}=0, \text { 即: } x+\frac{4}{y}=\frac{1}{x}+2 y=3 \sqrt{2} . \\ & \Rightarrow\left(x+\frac{4}{y}\right)\left(\frac{1}{x}+2 y\right)=18 \Rightarrow 2 x y+\frac{4}{x y}=9 . \\ & \Rightarrow x y=\frac{1}{2} \text { 或 } 4 .\end{aligned}

11

Threads

24

Posts

209

Credits

Credits
209

Show all posts

 Author| aaa Posted 2017-10-7 21:23
谢谢

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-10-9 23:53
回复 6# 游客
隐函数求导,找到极值点,但是还没确定极大还是极小,

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-10-10 08:47
回复 8# 其妙


    不用考虑极大还是极小,也不用考虑是否达到极值,但是要考虑区间两端,
即y=√2,x=±1+√2时的目标值。

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit