Forgot password
 Register account
View 1918|Reply 6

[不等式] 二元条件最值,请教一下

[Copy link]

11

Threads

24

Posts

0

Reputation

Show all posts

aaa posted 2017-10-6 10:02 |Read mode
已知 $mn=2$, 求 $(m+1)^2+(n+1)^2$ 的最小值

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2017-10-6 10:08
回复 1# aaa

不是有几何意义吗?圆与双曲线第三象限那支相切。

11

Threads

24

Posts

0

Reputation

Show all posts

original poster aaa posted 2017-10-6 10:29
回复 2# 力工


    谢谢。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-10-6 20:29
回复 3# aaa
代数的方法:展开后均值不等式立刻就会搞定了!
$mn=2$, 则$(m+1)^2+(n+1)^2=(m+n+1)^2-3$,
当$m,n>0$时,$m+n\geqslant2\sqrt2$,
当$m,n<0$时,$m+n\leqslant-2\sqrt2$,
明显取$m+n=-2\sqrt2$时,$(m+1)^2+(n+1)^2=(m+n+1)^2-3$取得最小值$6-4\sqrt2$
或者柯西不等式:
$(m+1)^2+(n+1)^2\geqslant\dfrac{(m+n+2)^2}2\geqslant\dfrac{(-2\sqrt2+2)^2}2=6-4\sqrt2$

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2017-10-6 21:28
回复 4# 其妙

三角换元。不讨论

11

Threads

24

Posts

0

Reputation

Show all posts

original poster aaa posted 2017-10-6 22:10
回复 4# 其妙

谢谢!

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2017-10-10 00:00
Last edited by hbghlyj 2025-4-17 19:31回复 5# 力工
这个也算讨论?
妙不可言,不明其妙,不着一字,各释其妙!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:33 GMT+8

Powered by Discuz!

Processed in 0.014629 seconds, 23 queries