Forgot password?
 Create new account
View 1672|Reply 10

一道关于递推数列的初始值对收敛性影响的题目

[Copy link]

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-10-13 21:24:45 |Read mode
数列$a_n$中,$a_1=1$,$a_2=x>0$,并有递推公式
\[ a_{n+2}=\frac{a_n}{1+a_{n+1}} \]
问当$x$在何范围内取值时,数列收敛。
数学暗恋者,程序员,喜欢古典文学/历史,个人主页: https://zhcosin.coding.me/

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-10-14 23:09:05
回复 1# zhcosin


    原来分母不是$1+a_n$。

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-1-20 17:02:22
奇子列和偶子列都是单调递减且以0为下界,故极限就是0,只要$x>0$.

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

 Author| zhcosin Posted at 2018-1-20 17:48:33
回复 3# Infinity
两个子列都单调递减没问题,但是只能得出至少有一个子列下界为零,得不出两个子列的下界都是零吧?

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-1-21 16:04:51
Last edited by Infinity at 2018-1-21 16:23:00回复 4# zhcosin

嗯,上面说极限值都为零是错的。因为下界存在只保证极限存在,但不能保证极限值一样。比如两个子列的收敛速度相差很大,那么其下确界不都为零是有可能的,因此极限值便不都为零。

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-1-21 17:47:28
Last edited by Infinity at 2018-1-22 14:22:00设 $a^{*}$ 为递推方程的平衡解,代入后得 $a^{*}=0$.
考虑函数 $f(u,v)=\frac{v}{1+u}$,有\[\frac{\partial f}{\partial u}=-\frac{v}{(1+u)^2},\;\frac{\partial f}{\partial v}=\frac{1}{1+u}\]令 $u=v=a^{*}=0$ 得\[\frac{\partial f}{\partial u}|_{u=v=a^{*}}=0,\;\frac{\partial f}{\partial v}|_{u=v=a^{*}}=1\]于是在平衡点处,有理递推式可线性化为\[a_{n+2}=0\cdot a_{n+1}+1\cdot a_n=a_n\]特征方程为\[y^2-1=0\]特征根在圆周|z|=1上,系统为临界稳定(随机稳定),可见最终奇偶子列可能收敛于不同的值,也可能收敛于同一个值(但不为零)。

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

 Author| zhcosin Posted at 2018-1-21 22:24:24
回复 6# Infinity
哎,微分方程我就不懂了。。。。

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-1-22 14:23:18
回复 7# zhcosin

可以看看非线性系统的稳定性分析。

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-4-15 07:26:05
在读史蒂文·芬奇的《数学常数》时,我曾经遇到过格罗斯曼常数。 这是一个有趣的常数 $c$,定义为唯一的 $x_1\in\mathbb{R}$,使得序列 $\{x_n\}_{n=0}^\infty,x_n=\frac{x_{n-2}}{1+x_{n-1}}\forall\ge0,x_0=1$ 收敛,其中 $c\approx0.73733830336929...$。这似乎是一个非常了不起的定理,我不知道如何证明这种形式的递归收敛于一个单值,尽管它似乎与奇偶项的极限行为有关。 我无法访问 Finch 和 MathWorld 引用的论文,其中显然给出了证明,所以我想知道至少使用了哪些技术来证明它。

我的问题是:有没有人知道(或能想出)这个序列收敛于一个唯一的 $x_1$ 的证明? 另外,$c$ 的封闭形式是否已知?

math.stackexchange.com/questions/2126965/

This is not an answer but here is a collection of facts about the sequences :

If $x_0,x_1 \ge 0$  then $x_n \ge 0$ forall $n$, and $x_{n+2} = \frac{x_n} {1+x_{n+1}} \le x_n$, so that the two sequences  
$(x_{2n})$ and $(x_{2n+1})$ are decreasing, so they have limits $l_0$ and $l_1$.

If the limit of one of the subsequences is nonzero, then the other sequence converges to $0$ exponentially, so one of them has to be $0$. Then we have to prove that forall $x_0 \ge 0$ there is a unique $x_1 \ge 0$ such that the sequence converges to $0$.

A long computation shows that  
$(x_{n+3} - x_{n+2}) - (x_{n+1} - x_n) =  \frac {x_n^2 x_{n+1}}{(1+x_{n+1})(1+x_n+x_{n+1})} \ge 0$,

and so the sequences $(x_{2n+1}-x_{2n})$ and $(x_{2n+2}-x_{2n+1})$ are increasing.
In particular, as soon as one of them gets positive, we know that the sequence will not converge.
Conversely, if $(x_{2n})$ doesn't converge to $0$ then $(x_{2n+1})$ converges to $0$ and so we must have $x_{2n+1} - x_{2n} > 0$ at some point, and similarly for the other case.
  
This means that $(x_n)$ converges to $0$ if and only if it stays decreasing forever, and we can decide if a particular sequence doesn't converge to $0$ by computing the sequence until it stops decreasing.

It also follows that the set $\{(x_0,x_1) \in\Bbb R_+^2\mid \lim x_n = 0\}$ is a closed subset of $\Bbb R_+^2$.

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-4-15 07:27:11
A sequence satisfy the recursive relation: $a_{n+2}=\frac{a_n}{1+a_{n+1}}$ ,$a_0=1,a_1=x$,At what value of x does $a_n$ converge?

It's obviously that when x is unequal to $0.737338……$ ,${a_n}$ has two limit points ,and one is zero.set f(x) is a limit point of $a_n$ and unequal to zero,there are some approximate value of f(x)

f(0.737)=3.12907e-4

f(0.8)=0.0580494

f(1)=0.244534

f(2)=1.19531

f(3)=2.16334

f(4)=3.14053

f(1000)=999.001

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-4-15 07:28:14
Infinity 发表于 2018-1-21 10:47
可见最终奇偶子列可能收敛于不同的值,也可能收敛于同一个值(但不为零)。
对于这些极限行为,能举一个 $x$ 的例子吗

手机版Mobile version|Leisure Math Forum

2025-4-21 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list