Forgot password
 Register account
View 1929|Reply 5

[不等式] 可以玩玩的不等式

[Copy link]

54

Threads

160

Posts

0

Reputation

Show all posts

血狼王 posted 2017-10-19 06:26 |Read mode
若 $a,b,c$ 为非负实数,则有
$$a\sqrt{a^2+3b^2}+b\sqrt{b^2+3c^2}+c\sqrt{c^2+3a^2}\geq \frac{2}{3}(a+b+c)^2.$$

54

Threads

160

Posts

0

Reputation

Show all posts

original poster 血狼王 posted 2017-10-19 23:00
好吧我自己给出一个证明……
易证$\sqrt{a^2+3b^2}\geq \frac{a^2+2ab+5b^2}{a+3b}.$
所以我们只需证明
$$\sum a\frac{a^2+2ab+5b^2}{a+3b}\geq \frac{2}{3}(a+b+c)^2$$

$$\sum (a\frac{a^2+2ab+5b^2}{a+3b}-\frac{7a^2+16ab+b^2}{12})\geq 0$$
亦即
$$\sum \frac{(a-b)^2(5a-3b)}{a+3b}\geq 0.$$
(待续)

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2017-10-21 13:56
回复 2# 血狼王

期待着你的更新。怎么还不更呢?
看来可以改为:若$a,b,c\geqslant -1$,则有$a\sqrt{a^2+3b^2}+b\sqrt{b^2+3c^2}+c\sqrt{c^2+3a^2}\geqslant \frac{2}{3}(a+b+c)^2$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-10-22 04:05
回复 3# 力工

怎么可以改成负?都负时显然不成立啊

54

Threads

160

Posts

0

Reputation

Show all posts

original poster 血狼王 posted 2017-10-23 13:08
回复 3# 力工


接下去我用SOS做,卡住了……一时间没有什么思路

281

Threads

550

Posts

2

Reputation

Show all posts

力工 posted 2017-10-23 14:05
回复 4# kuing

    是的,我错了,没注意到可以都负,

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:38 GMT+8

Powered by Discuz!

Processed in 0.012954 seconds, 22 queries