Forgot password?
 Register account
View 1714|Reply 5

[函数] 二元函数的最值

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-10-25 15:19 |Read mode
Last edited by 敬畏数学 2017-11-16 09:52$x,y$均为正数,且$x+y\leqslant4$,则$\dfrac{4x+y}{xy}+\dfrac{2y-x}{4}$的最小值______?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-10-25 15:36
x≤4-y,原式关于 x 递减,所以取最小时必定 x=4-y,代入后靠目测凑个系数即可均值解决。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2017-10-26 08:56
Last edited by 敬畏数学 2017-11-14 21:06$f(x)=\dfrac{4x+y}{xy}+\dfrac{2y-x}{4}$,$x\in(0,4-y]$为减函数,所以有,
\begin{align*}
\frac{4x+y}{xy}+\frac{2y-x}{4}
&\geqslant\frac{4}{y}+\frac{1}{4-y}+\frac{3y}{4}-1\\
&=\frac{4}{y}+ty+\frac{1}{4-y}+s(4-y)-1-4s\\
&\geqslant4\sqrt{t}+4\sqrt{s}-1-4s\\
\end{align*}
等号成立,当且仅当;\[\frac{4}{y}=ty,\frac{1}{4-y}=s(4-y),t-s=\frac{3}{4}\]
解得:\[s=\frac{1}{4},t=1,y=2\]
即所求式子的最小值为3。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2017-10-26 09:22
Last edited by 敬畏数学 2017-11-15 09:15解:
\begin{align*}
\frac{4x+y}{xy}+\frac{2y-x}{4}
&=\frac{4x+y}{xy}+\frac{2y-x+4}{4}-1\\
&\geqslant\frac{4x+y}{xy}+\frac{3y}{4}-1\\
&=\frac{4}{y}+\frac{1}{x}+\frac{3y}{4}-1\\
&=\frac{4-s}{y}+\frac{s}{y}+\frac{1}{x}+\frac{3y}{4}-1\\
&=\frac{4-s}{y}+\frac{3y}{4}+\frac{1}{x}+\frac{s}{y}-1\\
&\geqslant2\sqrt{\frac{3(4-s)}{4}}+\frac{(\sqrt{s}+1)^2}{x+y}-1\\
&\geqslant2\sqrt{\frac{3(4-s)}{4}}+\frac{(\sqrt{s}+1)^2}{4}-1\\
\end{align*}
等号成立,当且仅当满足;$\begin{cases}
x+y=4 \\
\dfrac{4-s}{y}=\dfrac{3y}{4}\\
s=1\end{cases}$
解得:\[s=1,x=y=2\]
即所求式子的最小值为3。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-10-26 10:18
消元或逐元法(留一个变量,其他看作常量)。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-10-27 00:11

Mobile version|Discuz Math Forum

2025-5-31 10:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit