Forgot password?
 Register account
View 5380|Reply 22

[几何] 请教各路大神一题.

[Copy link]

4

Threads

7

Posts

63

Credits

Credits
63

Show all posts

_xiao Posted 2017-11-3 22:40 |Read mode
请教各路大神一题.
DVF6~)I2Z0B17TQ4PVWAVKX.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-4 04:23
211.png

4

Threads

7

Posts

63

Credits

Credits
63

Show all posts

 Author| _xiao Posted 2017-11-4 13:56
回复 2# 乌贼


    懂了,谢谢!非常感谢

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-11-7 13:17
回复 2# 乌贼


    这题好难,没有看懂,可以解释一下吗?

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-7 14:58
Last edited by 乌贼 2021-9-22 03:13回复 4# 走走看看
令\[ \angle ABA_1=\angle AA'A_1=\angle ACA_1=\angle \theta \]\[ \angle A_1BC =\angle A_1CB=\beta \]有\[ \begin{align*}
\dfrac{\sin B+\sin C}{AA'\cos\dfrac{\angle BAC}{2}}&=\dfrac{\sin (\beta +\theta )+\sin (\beta -\theta )}{AA'\dfrac{A_1B}{A'A_1}}\\&=\dfrac{2\sin\beta \cos\theta }{A_1B\cos\theta }\\&=\dfrac{2\dfrac{A_1B}{A'A_1}}{A_1B}=\dfrac{2}{A'A_1}\\&=2
\end{align*} \]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-7 15:10
这题明明告诉你非等腰,就是叫你用等腰吗

4

Threads

7

Posts

63

Credits

Credits
63

Show all posts

 Author| _xiao Posted 2017-11-7 15:23
回复 5# 乌贼


    sin B + sin C 那一步化简后问题吧,应该化简为sin(β+θ)+cos (β-θ).

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-7 15:26
Last edited by 乌贼 2021-9-22 03:17回复 7# _xiao
\[ \angle B=\angle \beta +\angle \theta \]\[ \angle C=\angle \beta -\angle \theta  \]都没有$\cos$,怎么出现$\cos$?
完整写出\[ \sin B+\sin C=\sin(\beta +\theta ) +\sin(\beta -\theta )=\sin \beta \cos \theta +\cos\beta \sin\theta +\sin\beta \cos\theta -\cos\beta \sin\theta =2\sin\beta \cos\theta \]

4

Threads

7

Posts

63

Credits

Credits
63

Show all posts

 Author| _xiao Posted 2017-11-7 15:54
请问∠B=∠β+∠θ怎么得到的,如何按照您的说法,得不到∠B=∠β+∠θ呀,还请大神指点一二

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-11-7 17:04
回复 6# 乌贼


    大师精明!太牛了!谢谢指教!

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-11-7 17:14
回复 8# 乌贼


    $大师笔误了,β=∠A1BC=∠A1CB=∠A1A'B。$
    这样的话,式子的倒数第二行也应相应修改:
    $\frac{2\frac{A1C}{A'A1}}{A1B}=\frac{2A1C}{A1B}=2。$
   
    估计_xiao发生疑问就是源于这个。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-11-7 19:05
Last edited by isee 2017-11-7 19:14回复 2# 乌贼


没有直接用下托勒密(Ptolemy)定理来得爽。

记$AB=c,AC=b,BC=a,A_1B=A_1C=m$,则$$mb+mc=AA_1a.$$

在$\triangle ABC$中,由正弦定理,上式即$$m(\sin B+\sin C)=AA_1\sin A \Rightarrow \frac{\sin B+\sin C}{AA_1\sin A }=\frac 1m.$$

由倍角公式即得目标式$$\frac{\sin B+\sin C}{AA_1\cos(A/2)}=\frac {\sin(A/2)}{m/2}=1.$$

注1:在圆$O$中,连接$OB$,在$\triangle OBA_1$中容易得到$$OA_1\cdot\sin(A/2)=m/2.$$

注2:当$b\rightarrow c$时,亦能得到选择题的答案.

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-7 19:07
回复 12# isee
不懂这个道理

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-11-7 19:14
回复 13# 乌贼


   

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-11-7 19:21
回复  isee
不懂这个道理
乌贼 发表于 2017-11-7 19:07

    结果不一样,到底是谁算错了?2楼的图的字母与题中字母不符,不想看。。。。。。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-11-7 21:16
Last edited by 走走看看 2017-11-7 21:50回复 15# isee


    乌贼做得没有问题,我验证过。虽然A1、A'标记的和题目的不同,但不影响实质。只要把题目中的A1换成A'就可以了。

    $您的是否有问题,我不知道。也许您的哪一步笔误,导致结果错误。可能是OA1⋅sin(\frac{A}{2})=\frac{m}{2}。$

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2017-11-7 21:21
回复 16# 走走看看
回复 15# isee
我的错了,把半径当直径

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-8 16:08
突然发现,我在《撸题集》第 580 页题目 4.10.1 证法一的前几行其实就是在解决楼主这个问题……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-11-8 16:30
回复 18# kuing

0.1也是变态,粗一看,以为O是外心。

PS:这个突然真是突然。。。。。。。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-8 16:48
回复 19# isee

可惜人教论坛还是打不开,真是的,会都开完这么久了还不开,还要等啥呢?……

Mobile version|Discuz Math Forum

2025-5-31 10:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit