Forgot password?
 Create new account
View 2548|Reply 6

[几何] 一道解析几何的二元最值题目

[Copy link]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2013-10-23 20:23:50 |Read mode
Last edited by 郝酒 at 2013-10-23 20:42:00点P在圆$x^2+(y-4)^2=1$上,Q在$\frac{x^2}{9}+y^2=1$上,求$|PQ|$的最大值.
参数化,算出$|PQ|^2=(\cos\theta-3\cos\alpha)^2+(4+\sin\theta-\sin\alpha)^2$后面就不知道怎么办了~

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-23 21:14:40
回复 1# 郝酒
圆心到椭圆的距离,再加一个半径就完了吧?
答案:$3\sqrt{3}+1$?
妙不可言,不明其妙,不着一字,各释其妙!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-23 21:47:23
回复  郝酒
圆心到椭圆的距离,再加一个半径就完了吧?
答案:$3\sqrt{3}+1$? ...
其妙 发表于 2013-10-23 21:14

问题是取最值时大概是这个样子的情形
QQ截图20131023214941.gif

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-23 21:53:54
回复 3# kuing
把那两个切点连起来,看看过不过圆心?用软件量一下,看看我的答案对不对?
反正我经常算错,有时候你的跟帖又太快,我刚刚纠正错误(删帖再发帖)的时候,你就回复了,
妙不可言,不明其妙,不着一字,各释其妙!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-23 21:55:53
回复 4# 其妙

嗯,那没问题,一定过。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-23 21:58:35
还好,圆心在对称轴上,有得算,不然就四次方程了。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-23 22:04:09
还好,圆心在对称轴上,有得算,不然就四次方程了。
kuing 发表于 2013-10-23 21:58

同意,
妙不可言,不明其妙,不着一字,各释其妙!

手机版Mobile version|Leisure Math Forum

2025-4-21 14:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list