Forgot password?
 Register account
View 2691|Reply 6

[几何] 一道解析几何的二元最值题目

[Copy link]

132

Threads

251

Posts

2288

Credits

Credits
2288

Show all posts

郝酒 Posted 2013-10-23 20:23 |Read mode
Last edited by 郝酒 2013-10-23 20:42点P在圆$x^2+(y-4)^2=1$上,Q在$\frac{x^2}{9}+y^2=1$上,求$|PQ|$的最大值.
参数化,算出$|PQ|^2=(\cos\theta-3\cos\alpha)^2+(4+\sin\theta-\sin\alpha)^2$后面就不知道怎么办了~

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-23 21:14
回复 1# 郝酒
圆心到椭圆的距离,再加一个半径就完了吧?
答案:$3\sqrt{3}+1$?
妙不可言,不明其妙,不着一字,各释其妙!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-23 21:47
回复  郝酒
圆心到椭圆的距离,再加一个半径就完了吧?
答案:$3\sqrt{3}+1$? ...
其妙 发表于 2013-10-23 21:14
问题是取最值时大概是这个样子的情形
QQ截图20131023214941.gif

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-23 21:53
回复 3# kuing
把那两个切点连起来,看看过不过圆心?用软件量一下,看看我的答案对不对?
反正我经常算错,有时候你的跟帖又太快,我刚刚纠正错误(删帖再发帖)的时候,你就回复了,
妙不可言,不明其妙,不着一字,各释其妙!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-23 21:55
回复 4# 其妙

嗯,那没问题,一定过。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-23 21:58
还好,圆心在对称轴上,有得算,不然就四次方程了。

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-23 22:04
还好,圆心在对称轴上,有得算,不然就四次方程了。
kuing 发表于 2013-10-23 21:58
同意,
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-6-5 18:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit