Forgot password
 Register account
View 1506|Reply 3

[函数] 求$f(4411)$

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2017-11-14 21:00 |Read mode
设$f(n)$是定义在$\mathrm {N^*}$上的函数,满足
(1)$f(f(n)=4n+15,n\in \mathrm {N^*}$;
(2)$f(2^{k-1})=2^k+5,k\in \mathrm {N^*}$.
求$f(4411)$。

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2017-11-15 03:53
回复 1# isee

直接猜$f(n)=2n+5$是最快的,但懒得去证明
另一种就是凑数的方法
\[f(64)=f(2^6)=2^7+5=133\]
\[f(f(64))=f(133)=4·64+15=271\]
\[f(f(133))=f(271)=4·133+15=547\]
\[f(f(271))=f(547)=4·271+15=1099\]
\[f(f(547))=f(1099)=4·547+15=2203\]
\[f(f(1099))=f(2203)=4·1099+15=4411\]
\[f(f(2203))=f(4411)=4·2203+15=8827\]

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2017-11-15 09:08
未命名.PNG

764

Threads

4672

Posts

27

Reputation

Show all posts

original poster isee posted 2017-11-21 19:42
厉害厉害,楼上二位。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:45 GMT+8

Powered by Discuz!

Processed in 0.039644 seconds, 25 queries