Forgot password?
 Register account
View 2644|Reply 6

[不等式] 关于复数模的不等式

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-11-15 20:50 |Read mode
给定实数$r\in (0,1)$.证明:若$n$个复数$z_1,z_2,\cdots,z_n$满足$\abs{z_k-1}\leqslant r(k=1,2,\cdots,n)$,则$$\abs{z_1+z_2+\cdots+z_n}\cdot \abs{\frac 1{z_1}+\frac 1{z_2}+\cdots+\frac 1{z_n}}\geqslant n^2(1-r^2).$$

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2017-11-16 17:58
上述结论可以推广:
设$\lambda_k>0$,$\sum_{k=1}^n\lambda_k=1$,记$A=\sum_{k=1}^n\lambda_kz_k$,$G=\Pi_{k=1}^n z_k^{\lambda_k}$,$H=\frac{1}{\sum_{k=1}^n\frac{\lambda_k}{z_k}}$,则有\[(1-r^2)|A|\leqslant |H|\leqslant \frac{|A|}{(1-r^2)}\tag{1}\]以及\[\frac{(1-r^2)|G|}{1-|G-1|^2}\leqslant|H|\leqslant\frac{|G|^2}{1-r^2}\tag{2}\]$(1)$式右端便是1楼的不等式。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-17 03:19
回复 2# Infinity

我在《常用不等式(第4版)》里查到了这结论(P496),可惜没提供证明,只提供了一个参考文献:
QQ截图20171117031735.jpg
跳到参考文献[301]是这个:
QQ截图20171117031819.jpg
不知从哪里找才能看到这篇文章了……

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2017-11-17 12:49

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-17 13:35
回复 4# Infinity

多谢!

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2017-11-17 15:22
回复 5# kuing


    你那里能下载吗?若不能,我可以上传文件。不过里面的证明似乎并不初等,并且还比较复杂。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-17 15:27
回复 6# Infinity

能下啊,嗯,很复杂的样子,一时间还看不来,对复数不太熟

Mobile version|Discuz Math Forum

2025-5-31 10:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit