|
乌贼
Posted 2017-11-18 01:36
易证$ \triangle DEF $为正三角形,有\[ DF=DE \]作$ PM\perp BC $于$ M $,$ MN\perp AC $于$ N $,得\[ \angle PMN=60\du \]又$ DM\px DF,MN\px DE $有\[ \dfrac{PM}{FD}=\dfrac{CM}{CD} =\dfrac{MN}{DE}\riff PM=MN\]即$ \triangle PMN $为正三角形,故\[ \angle APN=90\du \]所以\[ \triangle APN\cong \triangle BMP\riff \dfrac{AP}{PB}=\dfrac{MB}{PB} =\dfrac{1}{2}\] |
|