Forgot password?
 Register account
View 1692|Reply 2

[函数] 一道准线性规划问题

[Copy link]

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-11-20 09:40 |Read mode
Last edited by 敬畏数学 2017-11-21 14:59已知函数$f(x)=2lnx-ax^2+3$,若存在实数$m,n\in[1,5]$,满足$n-m\geqslant2$时,有$f(m)=f(n)$成立,则实数$a$的最大值_____.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-20 15:50
非严格解法:易得
\[
a = \frac{\ln m^2 - \ln n^2}{m^2 - n^2},
\]
想想 $\ln x$ 上两点的连线,可知当固定其中一点时,另一点越左斜率越大,所以 $m=1$, $n=3$ 时最大,结果就是 $\ln(3)/4$。

要将其改写为严格解法,只需用代数方法证明“点越左斜率越大”这一点,易知这等价于证明 $\ln(t)/(t-1)$ 的单调性,过程略。

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

 Author| 敬畏数学 Posted 2017-11-20 16:52
回复 2# kuing
nice!

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit