|
kuing
Posted 2017-11-21 14:09
记
\[f=\frac{(a^3+b^3)c^2}{a^5+b^5+c^5},\]
下面求 $f$ 的最大值。
令 $a^3+b^3=2x^3$,则由幂平均不等式有
\[\sqrt[5]{\frac{a^5+b^5}2}\geqslant \sqrt[3]{\frac{a^3+b^3}2}
\riff a^5+b^5\geqslant 2x^5,\]
故
\[f\leqslant \frac{2x^3c^2}{2x^5+c^5},\]
由均值得
\begin{align*}
2x^5+c^5&=\frac12\left( \frac{4x^5}3+\frac{4x^5}3+\frac{4x^5}3+c^5+c^5 \right) \\
&\geqslant \frac52\sqrt[5]{\left( \frac{4x^5}3 \right)^3c^{10}} \\
&=\frac52\left( \frac43 \right)^{3/5}x^3c^2,
\end{align*}
所以
\[f\leqslant \frac45\left( \frac34 \right)^{3/5}\approx 0.673,\]
不难验证当 $a/c=b/c=\sqrt[5]{3/4}$ 时取等,所以以上就是 $f$ 的最大值,也就是我们可以写出加强式
\[\frac45\left( \frac34 \right)^{3/5}(a^5+b^5+c^5)\geqslant (a^3+b^3)c^2. \] |
|