Forgot password?
 Register account
View 1898|Reply 2

[不等式] 已知三数两两之差绝对值不超过1/2,求w=x+y+z-xy-yz-zx的最值

[Copy link]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-11-30 23:21 |Read mode
8blog图片.png
妙不可言,不明其妙,不着一字,各释其妙!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-11-30 23:55
最小值为零就不废话了,最大值方面,由对称性不妨设 $x\geqslant y\geqslant z$,则
\begin{align*}
&x+y+z-xy-yz-zx\\
={}&\frac56-\frac13\left( (x-y)(y-z)+\frac14-(z-x)^2 \right)-\frac1{12}(2x+2y+2z-3)^2\\
\leqslant{}&\frac56,
\end{align*}
当 $x=y=2/3$, $z=1/6$ 时取等,所以最大值为 $5/6$。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

 Author| 其妙 Posted 2017-11-30 23:58
牛!

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit