Forgot password?
 Register account
View 5787|Reply 26

[几何] 求正方体的一顶点到面的距离

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2017-12-2 16:41 |Read mode
Last edited by realnumber 2017-12-2 16:53正方体$ABCD-A_1B_1C_1D_1$,棱长为4,点A始终在面α内,面ABCD与面α成30°,
求$C_1$到面α的距离的最大值.

设$\vv{n}$为面α的一个单位法向量,$\vv{AA_1}=\vv{a},\vv{A_1C_1}=\vv{b}$,$\sqrt{2}\abs{\vv{a}}=\abs{\vv{b}}=4\sqrt{2}$
<$\vv{a},\vv{n}$>=30°,$\vv{a}·\vv{b}=0$,求$\abs{(\vv{a}+\vv{b})·\vv{n}}$的最大值.
引入$\vv{c}$,$\vv{a}·\vv{c}=\vv{c}·\vv{b}=0,\abs{\vv{c}}=1$,并设$\vv{n}=x\vv{a}+y\vv{b}+z\vv{c}$
以下略,有没其它办法.

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-12-2 17:14
回复 1# realnumber
挺流行的目前。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-2 22:10
图是不是这样画?:
捕获.PNG

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-2 22:40
建系也很简单,以 $A$ 为原点,$AB$, $AD$, $AA_1$ 为坐标轴且 $C_1(4,4,4)$,设 $\bm n$ 为面 $\alpha$ 的法向量,由于面 $ABCD$ 的法向量在 $z$ 轴上,故 $\bm n$ 与 $z$ 轴成 $30\du$,轨迹形成圆锥面,当其长度取定时,即为一圆,由此可不妨设 $\bm n=\bigl(\cos t,\sin t,\sqrt3\bigr)$,那么 $\alpha$ 的方程为 $\cos t\cdot x+\sin t\cdot y+\sqrt3\cdot z=0$,那么 $C_1$ 到 $\alpha$ 的距离为
\[d=\frac{\bigl|4\cos t+4\sin t+4\sqrt3\bigr|}{\sqrt{\cos^2t+\sin^2t+3}}=2\cos t+2\sin t+2\sqrt3,\]
所以 $d$ 的范围为 $\bigl[-2\sqrt2+2\sqrt3,2\sqrt2+2\sqrt3\bigr]$。

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2017-12-2 22:45
回复 3# kuing


    恩,是这样的,

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-2 22:58
最后再来讲讲代码,为了美观,单字母向量建议用粗体(\bm)而不用箭头(\vv)。
另外,角括号用 \langle ... \rangle

原代码:
  1. 设$\vv{n}$为面α的一个单位法向量,$\vv{AA_1}=\vv{a},\vv{A_1C_1}=\vv{b}$,$\sqrt{2}\abs{\vv{a}}=\abs{\vv{b}}=4\sqrt{2}$
  2. <$\vv{a},\vv{n}$>=30°,$\vv{a}·\vv{b}=0$,求$\abs{(\vv{a}+\vv{b})·\vv{n}}$的最大值.
  3. 引入$\vv{c}$,$\vv{a}·\vv{c}=\vv{c}·\vv{b}=0,\abs{\vv{c}}=1$,并设$\vv{n}=x\vv{a}+y\vv{b}+z\vv{c}$
Copy the Code
效果:
设$\vv{n}$为面α的一个单位法向量,$\vv{AA_1}=\vv{a},\vv{A_1C_1}=\vv{b}$,$\sqrt{2}\abs{\vv{a}}=\abs{\vv{b}}=4\sqrt{2}$
<$\vv{a},\vv{n}$>=30°,$\vv{a}·\vv{b}=0$,求$\abs{(\vv{a}+\vv{b})·\vv{n}}$的最大值.
引入$\vv{c}$,$\vv{a}·\vv{c}=\vv{c}·\vv{b}=0,\abs{\vv{c}}=1$,并设$\vv{n}=x\vv{a}+y\vv{b}+z\vv{c}$
修改后:
  1. 设 $\bm n$ 为面 $\alpha$ 的一个单位法向量, $\vv{AA_1}=\bm a$, $\vv{A_1C_1}=\bm b$, $\sqrt2\abs{\bm a}=\abs{\bm b}=4\sqrt2$
  2. $\langle\bm a,\bm n\rangle=30\du$, $\bm a\cdot\bm b=0$, 求 $\abs{(\bm a+\bm b)\cdot\bm n}$ 的最大值.
  3. 引入 $\bm c$, $\bm a\cdot\bm c=\bm c\cdot\bm b=0$, $\abs{\bm c}=1$, 并设 $\bm n=x\bm a+y\bm b+z\bm c$
Copy the Code
效果:
设 $\bm n$ 为面 $\alpha$ 的一个单位法向量, $\vv{AA_1}=\bm a$, $\vv{A_1C_1}=\bm b$, $\sqrt2\abs{\bm a}=\abs{\bm b}=4\sqrt2$
$\langle\bm a,\bm n\rangle=30\du$, $\bm a\cdot\bm b=0$, 求 $\abs{(\bm a+\bm b)\cdot\bm n}$ 的最大值.
引入 $\bm c$, $\bm a\cdot\bm c=\bm c\cdot\bm b=0$, $\abs{\bm c}=1$, 并设 $\bm n=x\bm a+y\bm b+z\bm c$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-3 14:05
回复 3# kuing

突然发现打错了单词:get max 竟然打成了 gat max

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-12-3 16:24
回复 6# kuing


    \left< 少几个字母,且自适应,不过,这玩决要成对,否则要个 \right. 也差不多字母了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-3 17:26
回复 8# isee

明显无须自适应时建议不要自适应,自适应不但要成对,而且里面还不能断行,容易造成右凸出,当然这是说在真 latex 中的习惯了,在这里随意。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-12-4 13:31
未命名.PNG

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-16 08:58
Last edited by 走走看看 2017-12-22 08:48回复 10# 游客

游客的图便于联想,很好。有点美中不足的地方是把A与A1互换了一下,另一点是左上图的圆锥底面应该画到底面对角线AC之外。
$刚才检查了下,棱长为4,看成了棱长为1,最短\frac{\sqrt{3}-\sqrt{2}}{2}*4=-2\sqrt{2}+2\sqrt{3},最长\frac{\sqrt{3}+\sqrt{2}}{2}*4=2\sqrt{2}+2\sqrt{3}。$

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-16 11:22
回复 1# realnumber

$按照你的思路,|(\vv{a}+\vv{b})(\vv{n})|=|16x+32y|,往后再怎么求它的最大值呢?$

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

 Author| realnumber Posted 2017-12-16 14:03
回复 12# 走走看看

已知条件$\abs{\vv{c}}=1$,以及30度(用数量积公式)也用x,y表示出来.然后你会知道怎么做的.

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2017-12-18 15:01
怎么想象这个长度就只有两个值?一个是面$ABCD$与点$C_1$在平面${alpha}$的同侧时,一个是异侧时。

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-21 16:51
Last edited by 走走看看 2017-12-21 20:55回复 13# realnumber

$在\vv {a}·\vv {c}=\vv {c}·\vv {b}=0的前提下,|\vv {c}|是否是1没有关系,|(\vv {a}+\vv {b})·\vv {n}|=|x\vv {a}^2+y\vv {b}^2|=|16x+32y|。$
$根据cos<\vv {n},\vv {a}>=cos60°=\frac{\sqrt{3}}{2},即\frac{x\vv{a}^2}{\sqrt{x^2+y^2+z^2}}=\frac{\sqrt{3}}{2},$
$整理得到1021x^2-3y^2-3z^2=0。$

恕我愚笨,越算越复杂。请赐教!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-12-21 23:08
回复 15# 走走看看
楼主的基向量没选择好,导致运算复杂,
本题用柯西不等式即可得到最大值和最小值:
$-\sqrt{2(x^2+y^2)}\leqslant x+y\leqslant\sqrt{2(x^2+y^2)}$

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-21 23:26
Last edited by 走走看看 2017-12-22 11:51回复 16# 其妙

请问x、y分别是什么?按照你的意思,岂不是最小值为负的吗?

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-22 11:49
回复 4# kuing

$请教Kuing大神,这里参数t是指哪个角?想弄买白法向量n的确定依据,特别是还配了个\sqrt{3}。$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-12-23 15:40
回复 17# 走走看看
那个不等式只是其中一部分,另一部分是常数$2\sqrt3$

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-24 09:05
回复 18# 走走看看

本人向来不精细,把法向量的模看成了4,其实是2,这样,就好理解了。
不知道如何才能改掉粗心的习惯。

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit