Forgot password?
 Register account
View 1937|Reply 3

[几何] 空间直角坐标系的困惑(2016年浙江文科数学)

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-12-3 15:36 |Read mode
Last edited by 走走看看 2017-12-3 16:14 17103020536f3c014f404f6e8b.png

这道题,按以下方式建立空间直角坐标系,计算B、D‘的坐标,却发现结果不行。
立体几何.PNG
$设D'(x,y,z),则OD’=\frac{1}{2}AC=\frac{\sqrt{6}}{2},AD'=AD=\sqrt{5},A(0,\frac{\sqrt{6}}{2},0),B(\frac{\sqrt{30}}{2},0,0)。$
即:
$x^2+y^2+z^2=\frac{6}{4}$
$x^2+(y-\frac{\sqrt{6}}{2})^2+z^2=5$
$解得 y=-\frac{2}{\sqrt{6}},则D'可表示为(x,-\frac{2}{\sqrt{6}},\sqrt{\frac{5}{6}-x^2})。$
$\vv {BD'}=(x-\frac{\sqrt{30}}{2},-\frac{2}{\sqrt{6}},\sqrt{\frac{5}{6}-x^2})。$
$\vv {CA}=(0,1,0)。$
$|cosθ|=\frac{\frac{2}{\sqrt{6}}}{\sqrt{-\sqrt{30}x+9}}。$
$得不到\frac{\sqrt{6}}{6}。$

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2017-12-3 16:48
回复 1# 走走看看

forum.php?mod=viewthread&tid=4964&highlight=2016
在这里,有不少解答,包括本人的解答,但最容易想到的是1楼的解法。
按说结果也应是正确的。
请大师们看看问题到底在哪里。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-3 17:22
回复 1# 走走看看

x 是有范围的,那式子递增,让 x 取最大值就是那结果了

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2017-12-3 22:10
回复 3# kuing


谢谢!
$x∈[-\sqrt{\frac{5}{6}},\sqrt{\frac{5}{6}}],|cosθ|≤\frac{\sqrt{6}}{6}。$

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit