Forgot password?
 Register account
View 1327|Reply 5

求解方程

[Copy link]

9

Threads

7

Posts

141

Credits

Credits
141

Show all posts

231908 Posted 2017-12-3 18:39 |Read mode
未命名.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-3 22:06
因为
\[(a^2-b^2)(c^2-d^2)\leqslant (ac-bd)^2 \iff (ad-bc)^2\geqslant 0,\]
取 $c=5$, $d=3$ 且 $a>b>0$,则有
\[\sqrt {a^2-b^2}\leqslant \frac {5a-3b}4,\]
等号成立当且仅当 $3a=5b$,由此,我们有
\[12=\sqrt {16-x^2}+\sqrt {25-y^2}+\sqrt {36-z^2}\leqslant \frac {20-3x}4+\frac {25-3y}4+\frac {30-3z}4=12,\]
那么等号必须都取,即 $x=12/5$, $y=3$, $z=18/5$。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-12-4 11:32
换个写法:(本质一样)
未命名.PNG

9

Threads

7

Posts

141

Credits

Credits
141

Show all posts

 Author| 231908 Posted 2017-12-4 16:09
S_7089287936580.jpg
初中生的極限
不知道能不能這樣解

9

Threads

7

Posts

141

Credits

Credits
141

Show all posts

 Author| 231908 Posted 2017-12-4 16:12
回复 2# kuing
我沒學過不等式,
怎知要取c=5,b=3?

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2017-12-4 16:34
回复 5# 231908


    照你这么说,就按4楼的思路走,但是那个图得换个画法。

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit