Forgot password
 Register account
View 1337|Reply 5

求解方程

[Copy link]

9

Threads

7

Posts

0

Reputation

Show all posts

231908 posted 2017-12-3 18:39 |Read mode
未命名.png 未命名.png 未命名.png

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2017-12-3 22:06
因为
\[(a^2-b^2)(c^2-d^2)\leqslant (ac-bd)^2 \iff (ad-bc)^2\geqslant 0,\]
取 $c=5$, $d=3$ 且 $a>b>0$,则有
\[\sqrt {a^2-b^2}\leqslant \frac {5a-3b}4,\]
等号成立当且仅当 $3a=5b$,由此,我们有
\[12=\sqrt {16-x^2}+\sqrt {25-y^2}+\sqrt {36-z^2}\leqslant \frac {20-3x}4+\frac {25-3y}4+\frac {30-3z}4=12,\]
那么等号必须都取,即 $x=12/5$, $y=3$, $z=18/5$。

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2017-12-4 11:32
换个写法:(本质一样)
未命名.PNG

9

Threads

7

Posts

0

Reputation

Show all posts

original poster 231908 posted 2017-12-4 16:09
S_7089287936580.jpg
初中生的極限
不知道能不能這樣解

9

Threads

7

Posts

0

Reputation

Show all posts

original poster 231908 posted 2017-12-4 16:12
回复 2# kuing
我沒學過不等式,
怎知要取c=5,b=3?

7

Threads

578

Posts

9

Reputation

Show all posts

游客 posted 2017-12-4 16:34
回复 5# 231908


    照你这么说,就按4楼的思路走,但是那个图得换个画法。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:00 GMT+8

Powered by Discuz!

Processed in 0.012673 seconds, 25 queries