Forgot password?
 Register account
View 2205|Reply 13

[不等式] 向酷鹰致敬!

[Copy link]

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

xzlbq Posted 2017-12-7 16:53 |Read mode
Last edited by hbghlyj 2025-4-11 03:04三角形中证明
\[\left( b+c \right) {\it m_a}+{\it m_c}\, \left( a+b \right) \geq b{\it m_b}+
2\,{\it m_a}\,\sqrt {3}{\it m_c}\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2017-12-7 18:38
回复 1# xzlbq


    测试公式吧,如果是,该向$\mathrm \LaTeX$致敬,向kuing学习

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-7 19:07
欢迎 LBQ!

公式代码放在美元符号中即可

如:\$(b+c)m_a+m_c(a+b)=bm_b+2m_a\sqrt3m_c\$

得:$(b+c)m_a+m_c(a+b)=bm_b+2m_a\sqrt3m_c$


详细说明见置顶帖。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2017-12-9 00:07
回复  xzlbq


    测试公式吧,如果是,该向$\mathrm \LaTeX$致敬,向kuing学习
isee 发表于 2017-12-7 18:38
不是,是不等式资深高级玩家,欢迎!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2017-12-9 15:17
不等式玩家。这称呼很好。。。。

50

Threads

402

Posts

2881

Credits

Credits
2881
QQ

Show all posts

zhcosin Posted 2017-12-11 11:23
酷鹰。。。。

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

 Author| xzlbq Posted 2017-12-12 09:31
Last edited by xzlbq 2017-12-12 09:50
三角形中,设m_a,m_b,m_c是三角形中线,证明
\[\left( b+c \right) {\it m_a}+{\it m_c}\, \left( a+b \right) \geq b{\it m_b}+
2\sqrt {3}{\it m_a}{\it m_c}\]

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

 Author| xzlbq Posted 2017-12-12 09:51
Last edited by hbghlyj 2025-4-11 03:04回复 7# xzlbq


    说实话,这个不等式比较好看,who can do it?

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

 Author| xzlbq Posted 2017-12-12 10:21
在“珠峰不等式“( 微信号zhufengbudengshi)第64期中,我把这个不等式推广为三角形规范几何量不等式,即有不等式

\[\left( b+c \right) {\it h_a}+{\it h_c}\, \left( a+b \right) \geq b{\it h_b}+
2\sqrt {3}{\it h_a}{\it h_c}\]

但它等价于

\[{\frac {a+b}{c}}+{\frac {b+c}{a}}\geq 1+2\,\sqrt {3}\sin \left( B \right) \]

这个不等式又有加强式

\[{\frac {a+b}{c}}+{\frac {b+c}{a}}\geq 1+2(\sum{\tan{\frac{A}{2}}})\sin \left( B \right) \]
<=>
\[{\frac {y+z}{x+y}}+{\frac {z+x}{x+y}}+{\frac {z+x}{y+z}}+{\frac {x+y}{
y+z}}\geq 1+4\,{\frac {yz}{ \left( x+y \right)  \left( y+z \right) }}+4\,{
\frac {xz}{ \left( x+y \right)  \left( y+z \right) }}+4\,{\frac {xy}{
\left( x+y \right)  \left( y+z \right) }}
\]
easy.Done!

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

 Author| xzlbq Posted 2017-12-12 11:04
Last edited by hbghlyj 2025-4-11 03:03下面讨论将规范几何量取为角平分线的情形,此时,把不等式的形式变化一下

${\frac {a+b}{{\it w_a}}}+{\frac {b+c}{{\it w_c}}}-{\frac {b{\it w_b}}{{
\it w_c}\,{\it w_a}}}\geq 2\,\sqrt {3}
$

但此时很难

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

 Author| xzlbq Posted 2017-12-13 10:19
Last edited by hbghlyj 2025-4-11 03:06受10楼形式的启发,我们有类似式:



欢迎大家提供证法。具体来源请参阅我的公众号

0

Threads

7

Posts

138

Credits

Credits
138

Show all posts

zdyzhj Posted 2017-12-18 19:43
这种炸弹不等式有什么难的两边平方一下就完蛋了

0

Threads

7

Posts

138

Credits

Credits
138

Show all posts

zdyzhj Posted 2017-12-18 20:43
最终要解一个七次多项式,但可一行显式分解

2

Threads

9

Posts

58

Credits

Credits
58

Show all posts

 Author| xzlbq Posted 2017-12-20 13:44
Last edited by hbghlyj 2025-3-19 18:59\begin{aligned}
&\frac{\left(m_a+r_a\right)^2}{w_a\left(2 r_a+m_a\right)} \geq \frac{1}{4} \frac{(b+c)^2}{s(s-a)} \\
& \Rightarrow \sum \frac{\left(m_a+r_a\right)^2}{w_a\left(2 r_a+m_a\right)} \geq 2+\frac{R}{r}
\end{aligned}
这个不容易

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit