Forgot password
 Register account
View 1020|Reply 6

求和

[Copy link]

17

Threads

42

Posts

0

Reputation

Show all posts

student_qwh posted 2017-12-14 20:53 |Read mode

Related threads

17

Threads

42

Posts

0

Reputation

Show all posts

original poster student_qwh posted 2017-12-14 20:53
(转载)

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2017-12-15 04:16
回复 1# student_qwh

楼主请自行百度“伯努利数”
这玩意没有初等表达式,只能以母函数的形式表达,或以黎曼$\zeta$函数表达

17

Threads

42

Posts

0

Reputation

Show all posts

original poster student_qwh posted 2017-12-15 20:49

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-12-24 11:35
Faulhaber's formula\[\sum _{k=1}^{n}k^{p}={\frac {n^{p+1}}{p+1}}+{\frac {1}{2}}n^{p}+\sum _{k=2}^{p}{\frac {B_{k}}{k!}}p^{\underline {k-1}}n^{p-k+1}\]
相关帖子:
$1^6+2^6+3^6+....+n^6$的公式是?
关于自然数的等幂和证明或否定(①已经证明,见1楼附件)
等差数列的等幂和
等幂和的组合数通项
一串自然数等幂和的整除性质

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-12-24 12:22
From examples to matrix theorem
It is possible to obtain the coefficients of the polynomials of the sums of powers of successive integers without resorting to the numbers of Bernoulli but by inverting the matrix easily obtained from the triangle of Pascal. / 无需求助于伯努利数,通过求帕斯卡矩阵的逆,可以获得自然数幂求和公式的系数。
将多项式转化为组合数的过程一般化,对一个多项式求和有如下公式:
\[\sum _{k=1}^{n}p(k)={\begin{pmatrix}C_{1}^{n}&C_{2}^{n}&\cdots &C_{m+1}^{n}\end{pmatrix}}{\begin{pmatrix}C_{0}^{0}&0&\cdots &0\\-C_{0}^{1}&C_{1}^{1}&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\(-1)^{m}C_{0}^{m}&(-1)^{m-1}C_{1}^{m}&\cdots &C_{m}^{m}\\\end{pmatrix}}{\begin{pmatrix}p(1)\\p(2)\\\vdots \\p(m+1)\end{pmatrix}}\]
证明见zh.m.wikibooks.org/zh-hans/代數/本書課文/求和/組合數求和#求多項式的和

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-12-24 12:25

证明首项是$\frac{n^{p+1}}{p+1}$:

(红色=使用了黎曼积分的定义)
$$\frac{\sum _{k=1}^{n}k^{p}}{n^{p+1}}=\lim _{n \rightarrow \infty}  \frac{1}{n}\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{p}\color{red}=\int_{0}^{1} x^{p} \mathrm{~d} x=\left.\frac{x^{p+1}}{p+1} \right|_{0} ^{1}=\frac{1}{p+1}$$
$p$不为整数时, 求和公式不是多项式, 但以上依然成立: 当$p=-\frac12$时得到$$\frac{\sum_{k=1}^n k^{-1/2}}{\sqrt n}\to2$$
见这帖使用欧拉-麦克劳林公式可得到任意阶的估计, 例如:
$$\sum_{k=1}^n k^{-1/2}-2\sqrt n\to\zeta\left(\frac12\right)$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:17 GMT+8

Powered by Discuz!

Processed in 0.015673 seconds, 29 queries