Forgot password?
 Register account
View 1968|Reply 5

[不等式] 一道不等式

[Copy link]

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2017-12-14 23:00 |Read mode
若$a,b,c$均为正实数,求证
$$\sum_{cyc} a\sqrt{\frac{b}{a+2c}}\leq \frac{a+b+c}{\sqrt{3}}$$

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2017-12-15 14:39
由均值不等式\[\sum_{cyc} a\sqrt{\frac{b}{a+2c}}\leqslant \sqrt{\frac{1}{3}\sum_{cyc}\frac{a^2b}{a+2c}}\]故\[\begin{split}&\sum_{cyc} a\sqrt{\frac{b}{a+2c}}\leqslant \frac{a+b+c}{\sqrt{3}}\\
\iff& \sum_{cyc}\frac{a^2b}{a+2c}\leqslant (\sum_{cyc}a)^2\\
\iff&\sum_{cyc}a^2+\sum_{cyc}ab\left(2-\frac{a}{a+2c} \right)=\sum_{cyc}a^2+\sum_{cyc}ab+2\sum_{cyc}\frac{abc}{a+2c}\geqslant0\end{split}\]

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

 Author| 血狼王 Posted 2017-12-15 21:56
回复 2# Infinity


解答写的很好,谢谢

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2017-12-16 14:37
回复 3# 血狼王

可是最后一步看不出取等号在a=b=c时呢

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

 Author| 血狼王 Posted 2017-12-16 17:38
Last edited by 血狼王 2017-12-16 17:46回复 4# Infinity


等等,……
$$\sum_{cyc} a\sqrt{\frac{b}{a+2c}}\leqslant \sqrt{\frac{1}{3}\sum_{cyc}\frac{a^2b}{a+2c}}$$
错了,1/3应该改成3

0

Threads

153

Posts

1083

Credits

Credits
1083

Show all posts

Infinity Posted 2017-12-18 14:56
回复 5# 血狼王


    谢谢,怪不得我一直觉得不对劲……

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit