Forgot password?
 Register account
View 1923|Reply 2

[不等式] 再来一个不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2017-12-25 14:56 |Read mode
设正数a,b,c满足$a+b+c=3$。求证:$(\frac{3}{a}-2)(\frac{3}{b}-2)(\frac{3}{c}-2)\leqslant \dfrac{2ab}{a^2+b^2}$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-12-25 15:06
很简单啊
\[\frac 3a-2=\frac {a+b+c}a-2=\frac {b+c-a}a,\]
所以等价于
\[(b+c-a)(c+a-b)(a+b-c)\leqslant abc\cdot \frac {2ab}{a^2+b^2},\]
如果 $a$, $b$, $c$ 不构成三角形三边则左边 $\leqslant0$ 显然成立,当 $a$, $b$, $c$ 构成三角形三边,可令 $a=y+z$, $b=z+x$, $c=x+y$, $x$, $y$, $z>0$,此时不等式等价于
\[8xyz\leqslant (x+y)(y+z)(z+x)\cdot \frac {2(y+z)(z+x)}{(y+z)^2+(z+x)^2},\]
化简即
\[\frac 4{(y+z)^2}+\frac 4{(z+x)^2}\leqslant \frac 1{yz}+\frac 1{zx},\]
显然成立。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2017-12-25 15:52
回复 2# kuing


    好N,对我来说写得有点快,我得慢慢体会一下,谢谢了!
不知是否还有其它证法?

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit