Forgot password?
 Register account
View 1611|Reply 3

[数论] \(求[\frac{10^{10000}}{10^{100}+1}] \div 100的餘數\)

[Copy link]

13

Threads

16

Posts

286

Credits

Credits
286

Show all posts

ta5607 Posted 2018-1-9 21:30 |Read mode
\(求[\frac{10^{10000}}{10^{100}+1}] \div 100的餘數\)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-1-9 22:01
令 $x=10^{100}$,则
\[\frac{10^{10000}}{10^{100}+1}=\frac{x^{100}}{x+1}=\frac{(-x)^{100}-1^{100}}{x+1}+\frac{1}{x+1},\]
因为
\[(-x)^{100}-1^{100}=(-x-1)\bigl((-x)^{99}+(-x)^{98}+\cdots +1\bigr),\]
所以
\[\frac{10^{10000}}{10^{100}+1}=x^{99}-x^{98}+x^{97}-\cdots +x-1+\frac{1}{x+1},\]
于是
\[\left[ \frac{10^{10000}}{10^{100}+1} \right]=x^{99}-x^{98}+x^{97}-\cdots +x-1,\]
显然 $x^{99}-x^{98}+x^{97}-\cdots +x$ 末尾至少100个零,减去1后全变成9,所以除以100的余数就是99。

13

Threads

16

Posts

286

Credits

Credits
286

Show all posts

 Author| ta5607 Posted 2018-1-9 22:43
回复 2# kuing

$(-x)^{100}-1^{100}=(-x-1)\bigl((-x)^{99}+(-x)^{98}+\cdots +1\bigr)$

好像變負的就轉不過來欸....

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2018-1-9 23:02
回复 3# ta5607

$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1})$

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit