Forgot password?
 Register account
View 1068|Reply 8

请教三角形中最值问题

[Copy link]

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

hcgzsxm Posted 2018-1-13 09:37 |Read mode
在△ABC中,角A,B,C所对的边分别为a,b,c,若2c^2+ab≥kbc,则实数k的最大值是  ▲  .

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-1-13 11:03
很简单啊
\[ \iff \frac{2c}b+\frac bc+\frac{a-b}c\geqslant k \]
$\LHS>2\sqrt2-1$,
$b=\sqrt2c$, $a\to b-c$ ...

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

 Author| hcgzsxm Posted 2018-1-13 13:39
问题是题干中的等于号能取吗?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-1-13 14:02
回复 3# hcgzsxm

等号不能取,但那个值是左边的下确界(我已经给出了何时趋向它),所以k的最大值就是它。

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

 Author| hcgzsxm Posted 2018-1-13 14:47
那么,是否将题干中>=改为>更合理?

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2018-1-13 15:01
没所谓,反正逻辑上都是没问题的。

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

 Author| hcgzsxm Posted 2018-1-13 15:04
那么,题干中>=改为>是否更为合理?

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

 Author| hcgzsxm Posted 2018-1-13 16:12
Last edited by hbghlyj 2025-3-22 23:39\begin{aligned}
& k_{\text {max }}=2 \sqrt{2}-1 . \\
& \therefore 2 c^2+a b \geqslant(2 \sqrt{2}-1) b c . \\
& \text { 当取等时 }\left\{\begin{array} { l }
{ \frac { 2 c } { b } = \frac { b } { c } } \\
{ \frac { a - b } { c } = - 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
b=\sqrt{2} c \\
b=a+c \text {. }
\end{array}\right.\right. \\
& 又 \because \triangle A B C 中  a+c>b 与 b=a+c \text {矛盾. }
\end{aligned}

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2018-1-18 12:17
回复 8# hcgzsxm
类似改变下。A,B,C平面上任意三点,BC=a,CA=b,AB=c,(a,b,c均为正数),则$ \dfrac{c}{a+b}+\dfrac{b}{c} $的最小值。
$ |a-b|\leqslant c\leqslant a+b $ ,$\dfrac{c}{a+b}+\dfrac{b}{c} =\dfrac{c}{a+b}+\dfrac{1}{2}\dfrac{a+b}{c}-\dfrac{1}{2}\dfrac{a-b}{c} \geqslant \sqrt{2}-\dfrac{1}{2}$

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit